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Abstract
The dynamics of macromolecules are characterized by the presence of several length scales and
related timescales in which relevant phenomena take place. This defines the complex nature of
the liquid and renders its theoretical treatment a difficult matter. The necessity of developing
theoretical approaches that can describe in a comprehensive manner properties observed at
many different length scales is a fundamental challenge in polymer physics.

This review paper summarizes some key problems arising from this challenge and different
approaches taken so far in attempting to solve them. Theoretical models play a pivotal role in
building the infrastructure that allows one to model these multiscale properties. We present
methods for coarse-graining the structure of soft-matter systems, which provide effective
potentials that are input to multiscale simulations. We also present methods for coarse-graining
the dynamics of macromolecules in dilute solutions and in the melt state. Although much
progress has already been made, obtaining comprehensive theoretical tools that are efficient and
reliable in predicting complex fluid dynamics across many timescales of interest still remains an
open challenge.
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1. Introduction

Macromolecular liquids and solutions belong to the extended
family of soft condensed matter systems, because their
dynamic and mechanical properties can be strongly modified
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by relatively weak external fields. This characteristic
makes them desirable materials for technological applications.
Biological systems take advantage of this by producing self-
organized structures on multiple length scales. Through
these complex structures they provide efficient transport of
information and matter inside living cells. Understanding
the mechanisms that rule self-organizing processes in nature
could provide the knowledge needed to build efficient synthetic
machines able to self-assemble and function (molecular
motors) on a small (nanometer) length scale. In these systems,
processes taking place on many different length scales are
correlated, since the chemical nature of the macromolecule
(protein) is defined at the monomer (residue) length scale,
which is of the order of nanometer. This determines the global
properties of the molecules, as well as their ability to aggregate,
working cooperatively in an ensemble of macromolecules,
to reach self-assembled structures on the large length scales,
e.g. of about 104 nm, and dynamics on the large timescales,
e.g. of the order of milliseconds. One of the challenges in
understanding these kinds of physical processes is to develop
theoretical approaches that correlate properties across many
length scales and timescales.

From a general point of view, while only one length scale
determines the physical properties of simple liquids, the nature
of complex fluids is determined by the presence of several
length scales, and related timescales, where processes that
define their physical properties occur [1–3]. Macromolecular
liquids belong to the large family of complex fluids, because
even their simplest example, i.e. a melt of homopolymer
chains, exhibits phenomena on a wide range of timescales. The
structure of homopolymer liquids is fully determined when
two length scales are considered, which correspond to the
monomer statistical segment length, σ , and the overall polymer
dimension, i.e. its radius of gyration, Rg = σ(N/6)1/2,
where N is the total number of monomers in the chain.
Those two length scales define the pair distribution function,
g(r), from which all the thermodynamic properties of the
liquid can be derived [4, 5]. Homopolymer dynamics range
from fast oscillations in side chains, which are due to
intramolecular connectivity constraints, to very slow relaxation
of the backbone due to local energy barriers, and diffusion of
the whole chain. Phenomena of intermolecular origin add even
more complexity to the dynamics of homopolymer liquids,
because friction and cooperative intermolecular motion can
affect the time-dependent properties of the liquid across many
orders of magnitude in length and in timescales.

The theoretical treatment of structure and dynamics for
macromolecular liquids, increases in difficulty when the
focus is on systems that can undergo phase transition, such
as polymer mixtures and diblock copolymer melts. In
polymer mixtures, properties depend not only on the polymer
radius of gyration and monomer length scale, analogously
to homopolymer liquids, but also on the length scale of
concentration fluctuations, which diverges when the system
approaches its spinodal decomposition temperature. The
highest temperature of the two-phase region in a binary
system, is the upper critical solution temperature (UCST). The
monomer length scale, which defines the range of density

fluctuations, becomes the relevant length scale of demixing in
specific mixtures, where an opposite trend of phase separation
with temperature is observed. In this case, the phase diagram is
characterized by a lower critical solution temperature (LCST).
This phenomenon is the so-called ‘entropic demixing’, where
the asymmetry in the monomeric structure of the two
components of the mixture frustrates the local monomeric
packing in the liquid and causes an entropy-driven phase
separation at high temperature.

A new, intramolecular length scale affects the properties of
block copolymer liquids, namely the size of a block. Diblock
copolymers are macromolecules in which a homopolymer
chain of NA = f N monomers of type A is chemically
bound to a second homopolymer chain of different chemical
structure containing NB = (1 − f )N monomers of type
B , with N = NA + NB . The block size is defined by its
respective radius of gyration and the spatial dimension of the
block composed of A-type monomers, for example, is given
by RgA = σ(NA/6)1/2. Block copolymers phase separate on
the length scale that corresponds to the size of a block, because
intramolecular connectivity prevents complete demixing of the
two chemical species.

The ensemble of length scales that rule the properties
in macromolecular liquids are generically referred to as
‘mesoscopic’ length scales, because they are intermediate
between the atomistic, microscopic, description, which
depends on chemical details, and the ‘bulk’, macroscopic,
length scale that characterizes the thermodynamic properties
of the polymeric liquid. A characteristic timescale of
relaxation is associated with each length scale. In general,
theoretical tools to model the mesoscopic regime are in the
realm of statistical mechanics, whose purpose is to establish
a formal connection between the microscopic, atomistic,
description of the system and its macroscopic thermodynamic
properties. Non-equilibrium statistical mechanics provides the
tools to bridge different levels of coarse-graining in dynamical
processes [6–8].

This paper reviews some of the work performed in the
area of multiscale dynamics and coarse-graining, with a focus
on some specific examples. We start from the description of
theoretical procedures to coarse-grain the structure of complex
macromolecular fluids, which provide the effective coarse-
grained potentials required to perform mesoscale simulations
as well as the mean-force potentials needed as an input to
theories of dynamics on the mesoscale. This section of
the review starts from the simple homopolymer liquid and
proceeds by including coarse-graining of polymer liquids
with intramolecular and intermolecular structures of increasing
complexity, such as block copolymer liquids and polymer
mixtures. In the second part of the review, we discuss coarse-
graining methods for the dynamics of macromolecular liquids.
We present two examples: in the first, we focus on a system
with the simplest intramolecular structure, a homopolymer
liquid, and study the effect of intermolecular interactions on its
dynamics; in the second, we focus on the fluctuation dynamics
of a single protein in solution, where complex multiscale
interactions are mainly of intramolecular origin. Theoretical
predictions are compared with simulations and experiments to
analyze the range of validity of the proposed approaches.
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2. Coarse-graining and multiscale modeling in
computer simulations

Formally connecting the physics of the system so as to bridge
all the different length scales (and timescales) of interest is
an extremely complex task. Therefore, computer simulations
play a fundamental role as a source of information about these
processes [9, 10]. Computer simulations typically start with a
large system containing a high number of particles (to mimic
the thermodynamic limit, V → ∞, n → ∞ and constant
density ρ = n/V ) at some fixed thermodynamics conditions.
Once the interactions between the particles are known, the
space-time trajectories of the particles are calculated by
numerically solving the equations of motion. A well-defined
number of computational steps are executed before numerical
errors build up, ultimately degrading the precision of the data
obtained in the computational run. Present day computer
hardware limits the range of timescales that can be simulated to
O(10−8) s for a maximum number of particles of O(105). This
resolution, while perfect for simple liquids systems [11, 12],
does not allow the full simulation of complex fluids, which
require the investigation of a very large number of degrees of
freedom.

Several factors affect the efficiency of computer simula-
tions and much work has been devoted to minimizing their
impact in order to optimize computational time. First of all,
the system to be simulated has to be brought to equilibrium.
Because equilibrating sufficiently large polymeric systems at
realistic densities [13] requires a long computational time, new
techniques have been developed to decrease this time. Re-
cently, Theodorou, Mavrantzas and co-workers have proposed
a new procedure that takes advantage of a fast computational
algorithm developed for Monte Carlo simulations, which in-
cludes an ad hoc mechanism of breaking and rebinding the
polymeric chains to rapidly equilibrate the chain configura-
tion [14]. Because the conventional molecular dynamics (MD)
simulation requires an equilibration time comparable to that of
the actual simulation run, decreasing the time required for equi-
libration, significantly reduces the total computational time of
the simulation. This procedure allowed Mavrantzas, Theodoru
and co-workers to perform computer simulations of melts of
polymer at increasing degrees of polymerization, N , and cross-
ing over from the unentangled to the entangled regime. While
computational methods, like the one just discussed, allow one
to significantly extend the range of dynamics in macromolecu-
lar liquids that can be simulated, however, the timescales inves-
tigated by experiments extend even further and new strategies
have to be implemented to allow a direct comparison of those
data with simulations [15–22].

Because simulations build on the ergodicity of the system
and the completeness of the sampling procedure, reliable
statistically averaged quantities are obtained from trajectories
representing the evolution in time of a large number of
particles. Moreover, trajectories have to be recorded for a
sufficiently long computational time to allow the system to
sample all the configurational states available at the fixed
thermodynamic conditions of the simulation (temperature,
volume, polymer concentration). A way to overcome these

problems is to develop multiscale modeling techniques that
combine information obtained from a group of independent
simulations performed on a hierarchy of models where the
same system is represented at different levels of coarse-
graining. At each level of coarse-graining, the state of
the system is specified by a set of relevant variables while
small length scale variables are averaged out. Less detailed,
more coarse levels of description have a smaller number
of variables and capture no information on scales shorter
than their characteristic length scale. However, because of
the reduced number of units, simulations of coarse-grained
systems run faster than atomistic level simulations, enabling
the investigation on a much larger length scale. Another
advantage of this procedure is that, because the information
on the large spatial, long timescale is provided by the
mesoscale simulation, microscopic simulations can be limited
in the number of particles that are monitored and in the
computational time during which data are recorded. However,
multiscale modeling procedures need rigorous theoretical
formalisms to correlate, in a reliable and reversible manner and
across the many scales of interest, information obtained at the
different levels of coarse-graining.

2.1. Effective pair potentials for mesoscale simulations

To simulate a system coarse-grained at some specific length
scale, it is necessary to know the effective potential that
acts between the coarse-grained units. This is an effective
pair potential resulting from the mapping of many-body
interactions into pair interactions, through the averaging over
microscopic degrees of freedom. In this process, the potential
acting between microscopic units, i.e. the potential energy in
the Hamiltonian of the system, reduces to an effective potential
between coarse-grained units, which is a free energy in the
reference system of the microscopic coordinates. The coarse-
grained potential contains contributions of entropic origin due
to the microscopic, averaged-out degrees of freedom and is
therefore parameter dependent. For example, the effective
potential acting between the centers of mass of two interacting
polymers, discussed below, depends on temperature, density,
degree of polymerization, and effective segment length.

Parameter-dependent effective pair potentials have to be
handled with care. Because the form of the potential depends
on the procedure used to derive it, different procedures
can lead to different effective potentials, even for the same
system. For systems characterized by density-dependent
effective potentials obtained from pair distribution functions,
the calculation of the equation of state has to make use of
the compressibility equation, derived in the grand canonical
ensemble, which includes an integral over the density. The
use of the pressure (virial) or energy equations can lead
to quantitative errors in the estimate of thermodynamic
properties [23].

In the most common procedure, once the level of coarse-
graining is defined by the selection of the effective units
(e.g. the monomer, or a block, or the whole polymer for a
macromolecular liquid), the potential is obtained from their
pair distribution function, g(r) [4, 5]. For most systems, the
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potential has to be derived through a numerical, self-consistent
procedure. However, for a few simple cases the procedure
can be analytical, which has some advantages. Analytical
potentials, which are explicitly state dependent, are convenient
because they are immediately transferable across different state
points.

Because the key quantity in the derivation of the potential
is the pair distribution function, g(r), the following section
briefly summarizes the definition and the properties of this
function for a simple liquid. For the complex fluids discussed
in this paper, the pair distribution function has a slightly more
involved formalism. However, when a polymer is mapped onto
a soft colloidal particle, the description of the coarse-grained
system recovers the formalism of a simple liquid, with particles
interacting through the effective pair potential.

2.2. Theoretical background: the pair distribution function for
simple liquids

In a uniform fluid of density ρ = n/V , with n the number
of particles and V the volume, the structure of the fluid is
fully determined by the radial distribution function, g(r) with
r = |r − r0|, which is the conditional probability density of
finding a particle at position r given that another particle is
located at r0. In our description, particles are the effective units
of the coarse-grained system. For macromolecules coarse-
grained at the center of mass (com) level the formalism remains
consistent to the one for simple liquids, once the particle
density is defined, accordingly, as the number of polymeric
chains per unit of volume. For macromolecules containing N
monomers, the ‘chain’ density is defined as ρch = ρ/N .

It is often convenient to work with the total correlation
function, h(r) = g(r) − 1, which is the difference between
the distribution function and its random value of unity. The
total correlation function is a function of the direct correlation
function, c(r), which was introduced by Ornstein and Zernike.
For an isotropic, homogeneous liquid the Ornstein–Zernike
(OZ) equation reads

h(r) = c(r) + ρ

∫
c(|r − r′|)h(r ′) dr′, (1)

where the total correlation function between two particles is
given by the direct correlation function, c(r), plus indirect
contributions due to the propagation of the interaction through
the surrounding fluid. The long-ranged effective potential
between a pair of particles in the field of the surrounding ones,
is given by the potential of mean force, which is a function of
h(r),

βw(r) = − ln g(r) ≈ −h(r), (2)

and is long ranged, while the direct correlation function, c(r),
has a range comparable to that of the effective pair potential,
−βv(r). For systems with low particle density, the total
and direct correlation functions become identical, as h(r) ≈
c(r) ≈ −βv(r), and the mean-force potential reduces to the
effective potential, w(r) ≈ v(r).

For homogeneous, isotropic liquids the OZ equation
reduces in Fourier space to a simple algebraic equation

c(k) = h(k)

1 + ρh(k)
, (3)

that connects two unknown functions, c(k) and h(k). Solving
it requires coupling it with a second closure equation, which
reads in real space as

g(r) = exp[−βv(r) + h(r) − c(r) + B(r)]. (4)

Equation (4) represents a diagrammatic expansion of g(r),
and it is difficult to solve because we don’t know the bridge
function B(r). Approximated solutions of this equation entails
neglecting certain classes of diagrams, which leads to the
known equations, i.e. the so-called ‘closure approximations’.
Among those, we mention the Percus–Yevick (PY) closure,
defined as

c(r) = g(r)[1 − exp(βv(r))], (5)

and the hypernetted chain (HNC) approximation,

g(r) = exp[−βv(r) + h(r) − c(r)]. (6)

The PY closure yields accurate results for systems that
have a short-range, hard-core potentials, while the HNC
closure is accurate for systems that have soft-core, long-range
interactions [5]. Typically, monomer–monomer interactions
have a strong repulsive hard-core component and are short
ranged (range of the order of the monomer length scale), which
supports the use of the PY closure coupled to the Ornstein–
Zernike equation [24, 25]. On the other hand, when polymers
are coarse-grained at the center of mass level, the potential
becomes long ranged (range of the order of Rg) and soft, which
is well represented by a HNC closure [26, 27].

Once the OZ equation is solved by coupling it with the
proper closure approximation, and the effective potential, v(r),
is calculated, various thermodynamic quantities of interest can
be derived from the pair distribution function, g(r). These
include the isothermal compressibility, χT, as the limit at
zero wavevector of the static structure factor (compressibility
equation),

lim
k→0

S(k) = 1 + ρh(k) = ρkBT χT, (7)

the pressure (pressure or virial equation),

P = kBTρ − 2πρ2

3

∫ ∞

0
r 3 dv(r)

dr
g(r) dr, (8)

and the energy that, for a liquid containing n particles, reads
(energy equation)

U = 3kBT n

2
+ 2πnρ

∫ ∞

0
r 2v(r)g(r) dr. (9)

For polymers described at the microscopic, monomer level,
the Ornstein–Zernike equation acquires a matricial form that
requires the adoption of proper ‘molecular closures’ [24, 25].
There is extensive literature on this problem and the following
sections will briefly discuss specific cases, as needed.
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2.3. Numerical evaluation of coarse-grained potentials

Numerical procedures optimize the potential by minimizing
the errors in its predictions against available simulation
data. The numerical procedure starts by performing atomistic
computer simulations, followed by the numerical computation
of the coarse-grained pair distribution function, g(r). From
the latter, a first estimate of the coarse-grained potential is
obtained, through the Boltzmann inversion procedure, given
by the mean-force potential, v0(r) = w(r). A new
simulation of the coarse-grained system interacting through
v0(r), is then performed. From the simulation the coarse-
grained pair distribution function is calculated, g1(r), together
with its corresponding mean-force potential, which gives a
new estimate of the effective potential, v1(r) ≈ w1(r) =
−kBT ln g1(r). By repeating this procedure, a newly estimated
effective pair potential, vi+1(r), is obtained from the potential
in the previous cycle, through the following prediction–
correction method [28]

vi+1(r) = vi (r) + kBT ln
gi(r)

g(r)
. (10)

This procedure is repeated until convergence of the
pair distribution function is achieved. Other numerical
optimizations have been proposed, which have a degree
of success comparable to that of the Boltzmann inversion
procedure of equation (10) [29].

Determining the effective pair potential by numerically
reproducing the simulated pair distribution function relies on
the fact, demonstrated by Evans, that for a system described
by a pairwise-additive potential there is a unique functional
relationship between the pair correlation function and the
potential [30]. Evans has also shown that this statement holds
only in the case that the pair correlation function is known
exactly and over an infinite range. Since simulations produce
data that are neither exact nor infinite, the numerical evaluation
of the potential is bound to carry numerical errors [28].

A general weakness of the numerical procedures is due to
the fact that the pair distribution function is not very sensitive
to changes in the numerical value of the potential. Different
potentials, used as an input to coarse-grained simulations
of identical systems, can produce pair distribution functions
that are practically indistinguishable, with differences within
the precision of the atomistic simulation data against which
they are compared. However, small differences in the
shape and value of the potential can strongly affect other
properties, such as the values of thermodynamic quantities. For
example, it is known that since the coarse-graining of atomistic
systems produces effective potentials that are softer than the
microscopic scale ones, often simulations that use numerically
assessed potentials predict liquids that are too compressible.

Because the coarse-grained potential is parameter depen-
dent, its derivation through a self-consistent numerical opti-
mization suffers from the drawback of requiring that an atom-
istic simulation has to be performed for each set of initial con-
ditions of interest. The number of parameters entering the po-
tential can be high, and its systematic numerical derivation for

each set of coupled parameters can rapidly become computa-
tionally prohibitive. As an example, we mention that the effec-
tive potential for a liquid of macromolecules depends not only
on thermodynamic parameters, such as temperature, T , and to-
tal site density, ρ, but also on molecular parameters, such as
local flexibility and degree of polymerization, N . When liq-
uids of diblock copolymers are investigated, the effective po-
tential depends also on chain composition, f , and the interac-
tion parameter Nχeff ∝ T −1, where χeff defines the proximity
of the system to its order–disorder transition [31]. For mix-
tures of macromolecules, thermodynamic parameters include
also the polymer volume fraction, as well as their χeff param-
eter. In practice, numerical potentials are often used for state
points that are close enough to the one for which the potential
was parametrized, and in that range the potential is assumed
to be state independent, so that transferability is not a problem.
However, in this case, the range of applicability of the potential
is strongly limited.

Finally, when the coarse-grained potential is calculated
numerically from microscopic simulations, those have to be
performed for length scales and timescales large enough to
ensure a reliable numerical predictions of the potential at the
length scale characteristic of the coarse-graining procedure,
which strongly limits the computational gain of adopting a
coarse-graining procedure.

In conclusion, the numerical derivation of a coarse-grained
potential from microscopic simulations partially defeats the
purpose of adopting a coarse-graining procedure, because
it requires long-time, large-scale microscopic simulations to
be performed for each set of parameters of interest. As a
consequence, it is often the case that numerical procedures
have limited ability to reduce the total computational time
necessary to simulate complex macromolecular systems.

For most of polymer systems, coarse-grained models are
derived numerically. In general, the coarse-grained models
build up from the atomic structure, lumping together groups
of atoms into a larger effective particle. The simplest
version among them is the united atom (UA) model, which
groups atoms in the CH2 monomer together into an effective
united atom particle. This level of coarse-graining has been
extensively employed in simulations of polymer liquids, and it
has been proven to be quite successful in reproducing a large
range of physical properties measured experimentally. The
level of coarse-graining, however, is still very contained and
the longest timescale that can be simulated, even by a set of
computers working in parallel, is relatively short [32–36].

In specific cases, it is possible to derive analytical forms
of the coarse-grained pair distribution functions from which
input potentials for mesoscale simulations are derived by
enforcing a closure approximation. These potentials do not
suffer from the drawbacks of numerically derived ones, and
they allow a transparent, often analytical, derivation of the
thermodynamic properties for the coarse-grained system, e.g.
the bulk compressibility. The derivation of analytical coarse-
grained descriptions has been one of the main goals of our
research, and in the following sections we present a couple
of examples of analytical procedures to coarse-grain polymer
liquids.

5
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Figure 1. Plot of hcc(r) for PE melts with increasing N . Theory (full
lines) is compared with UA (filled symbols) and mesoscale (open
symbols) MD simulations for N = 96 (squares), 66 (circles), and 44
(diamonds). Inset shows vcc(r) for the N = 44 melt. Reprinted
figure with permission from [26]. Copyright 2004 by the American
Physical Society.

2.4. Mapping homopolymers into interacting soft colloidal
particles

One of the most popular coarse-grained description of polymer
liquids models polymer coils as interpenetrable soft spheres,
centered at the position of the polymer center of mass,
and interacting through a realistic soft-core potential. This
description affords an analytical form of the pair distribution
function for the coarse-grained system. For this model,
Dautenhahn and Hall [37] derived numerical solutions of the
effective potentials for polymer melts and blends. More
recently, Murat and Kremer [38] put forward a soft ellipsoid
model for Gaussian polymer chains, which was later extended
by Eurich and Maass [39]. For dilute solutions, Flory and
Krigbaum [40] obtained a mean-field derivation of the potential
between the centers of mass of a pair of polymers. Their mean-
field approach predicts a potential at contact that increases with
the degree of polymerization, in disagreement with computer
simulations (see, for example, figures 1 and 2). Flory’s
model is inconsistent with simulations because, in his mean-
field model, chains are not supposed to interpenetrate and the
monomer–monomer repulsive interaction adds up to a stronger
repulsion as the number of monomer increases. In reality,
polymers are fractal objects of dimension d = 2, and a chain
that occupies a region in three dimensions can fill its volume
only partially. As a consequence, the monomer density ρ

in the volume occupied by a chain, R3
g , decreases with an

increasing of degree of polymerization like ρ ∝ N/R3
g ∝

N−1/2. Renormalization group calculations [41] and scaling
theory [42], correctly predict a vanishing, but finite, potential
at contact in the asymptotic N → ∞ regime.

In a recent series of papers, Hansen and co-workers
presented for dilute and semi-dilute solutions of interacting
polymers, an effective state-dependent pair potential between
the polymer centers of mass. The potential is numerically
derived from the pair distribution function obtained from

Figure 2. Potential of mean force at contact, wcc(0, ρ∗
ch). Shown are

the limits from equations (26) (solid line), (27) (dashed line),
and (28) (dot–dashed line), as well as UA-MD data (symbols) with
error bars. Reprinted with permission from [27]. Copyright 2006,
American Institute of Physics.

lattice Monte Carlo simulations, by applying an HNC
approximation. Solutions are investigated in a range of
densities and temperatures, and from good-to poor-solvent
conditions. The potential at low density results from a sum
of effective Gaussian repulsive pairwise interactions between
two polymers. As the density increases, the potential develops
a shallow negative tail for intermolecular distances larger than
Rg [43]. At low polymer density, the dilute polymer solutions
map into the well-known problem of a liquid of particles
interacting through a repulsive Gaussian-core potential, which
has been extensively investigated in the past by Stillinger,
Weber and co-workers [44]. The Gaussian-core system shows
in a specific low-temperature, low-density limit a re-entrant
phase transition.

For liquids of homopolymer chains, we derived an
analytical expression for the total pair correlation function (cfs)
for interacting polymers coarse-grained at the center of mass
level. The general expressions for the pair correlation functions
involve com (c) and monomer (m) sites, hcc(r) and hcm(r).
For a homopolymer fluid of molecular number density, ρch,
where each chain consists of N monomers, hcc(r) is obtained
by solving four coupled Ornstein–Zernike (OZ) equations in
reciprocal space involving real (monomer) and auxiliary (com)
sites [45]. The respective matrix arrangement reads

C(k) = Ω−1(k)H(k)S−1(k)

= Ω−1(k) − S−1(k), (11)

where C(k) is the matrix of intermolecular direct cfs, Ω(k)

is the matrix of intramolecular cfs, H(k) is the matrix of
intermolecular total pair cfs, and S(k) = Ω(k) + H(k) is the
matrix of partial cfs, also known as the static structure factor
matrix.

All matrices in equation (11) have similar form, where
monomer/monomer (mm) and com/com (cc) site contributions
define diagonal elements, while cross contributions (cm/mc)
define off-diagonal elements. For a macromolecular liquid,
where each chain is sufficiently long that its intramolecular

6
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monomer distribution obeys Gaussian statistics and chain end
effects are negligible, it is useful to postulate that all monomer
sites along a polymer chain are equivalent [24]. In this
way, intramolecular and intermolecular cf matrices simplify
to a single matrix element, thus facilitating the solution of
the OZ equation. This approximation increases in accuracy
with increasing degree of polymerization and is essential at
rendering the original site-specific problem into an analytically
tractable one. The assumption is better justified on the grounds
that our approach focuses on coarse-grained functions, where
monomer degrees of freedom are averaged in a mean-field
manner.

Krakoviack et al [45] proposed a solution to equation (11)
under the hypothesis that the com auxiliary site of one
molecule does not interact directly with either the com or the
monomers of another molecule (i.e. cmm(k) is the only non-
vanishing element in C(k)). With this assumption, the solution
is given by

hcc(k) =
[

ωcm(k)

ωmm(k)

]2

hmm(k), (12)

where hmm(k) is the total pair intermolecular monomer/mono
mer cf, ωcm(k) is the intrachain cf of monomers about the
com, and ωmm(k) is the intramolecular monomer/monomer
cf. Use has been made of the properties that ωcc(k) = 1
(since the com bears no internal structure), ωcm(k) = ωmc(k),
and Scm(k) = Smc(k). Moreover, Smm(k) = ωmm(k) +
Nρchhmm(k), Scm(k) = ωcm(k) + Nρchhcm(k) = Smc(k),
and Scc(k) = 1 + ρchhcc(k). The definition of Scc(k)

formally corresponds to that of a simple liquid. Consistent
with equation (12), the com/monomer total pair cf reduces to
the simplified form,

hcm(k) =
[

ωcm(k)

ωmm(k)

]
hmm(k). (13)

Both equations (12) and (13) are entirely general and hold for
any macromolecular fluid.

In our coarse-graining approach, intramolecular cor-
relations establish the bridging between mesoscopic and
monomeric intermolecular correlations. For long molecular
chains, the intramolecular monomer/monomer form factor fol-
lows Gaussian statistics, which is described well by the Debye
formula [46],

ωmm(k) = 2N(e−k2 R2
g + k2 R2

g − 1)

k4 R4
g

, (14)

Rg is the radius of gyration of the molecule. For
mathematical convenience, however, it is customary to
represent equation (14) using the corresponding Padé
approximant [46],

ωmm(k) ≈ N

1 + k2 R2
g/2

. (15)

The com/monomer intramolecular form factor, ωcm(k),
is defined as the Fourier transform of the distribution for
a ‘generic’ monomer unit about the molecular com site.
Specifically, the latter is derived by performing an average over

all units and normalizing the distribution in real space of all
‘specific’ monomeric units j about the com. The probability
function in real space reads [47]

P(r j ) =
(

3

2π〈r 2
j 〉

)3/2

e−3r2
j /(2〈r2

j 〉), (16)

where r j represents the vector between segment j and the com.
The mean square distance from segment j to the com is given
by

〈r 2
j 〉 = Nσ 2

3

[
1 − 3 j (N − j)

N2

]
, (17)

which takes into account the feature that end segments in a
chain are on average located remotely from the com. The
segment density distribution function for a generic monomer
about the com can be accurately rendered by the well-known
Gaussian form factor [47],

ωcm(k) = Ne−k2 R2
g/6. (18)

When compared against simulation data, we observe
that equation (18) approximates in good fashion all test
systems. [27] However, the choice of equation (15) over (14)
has the advantage of providing an analytically tractable
equation at the expense of only a slight disagreement between
theory and simulation data. In conclusion, to achieve an
analytical solution of equations (12) and (13), we adopt as
input equations (15) with (18). These equations together
ensure analyticity and a reasonable agreement with UA-MD
simulations.

At the monomer level, the total pair distribution function,
hmm(r), is modeled using Curro and Schweizer’s polymer
reference interaction site model (PRISM) [24, 25]. The
polymer is described as a ‘thread’, in analogy with Edwards’
field theoretic methods [49], i.e. a chain of vanishing thickness,
infinite length, and constant monomer density. In PRISM, the
OZ equation for the monomer total pair cf is solved by ignoring
chain end effects and enforcing a hard-core Percus–Yevick-like
closure, i.e. cmm(k) = cmm(0) = c0 with hmm(r → 0) = −1
and cmm(r > 0) = 0. The solution of the monomer-level OZ
equation yields the simple form

hmm(r) = ξ ′
ρ

r

[
exp

(
− r

ξρ

)
− exp

(
− r

ξc

)]
, (19)

where ξρ is the length scale of density fluctuations defined as
ξ−1
ρ = ξ−1

c + ξρ
′−1, and ξ ′

ρ = Rg/(2πρ∗
ch) with ρ∗

ch ≡ ρch R3
g

being the reduced molecular number density. Moreover, ξc =
Rg/

√
2 is the length scale of the correlation hole [48].

In the thread model, hmm(r) does not describe solvation
shells observed on the local scale in macromolecular liquids,
which result from hard-core excluded volume monomer
interactions. On the other hand, the thread model captures
correctly the correlation hole effect on the length scale
of Rg, which is a feature characteristic of liquids of
macromolecules [48]. Since r � Rg is the relevant length scale
for the mesoscopic properties of interest here, the thread model
works well for our coarse-graining purposes, and coupled with

7
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the Padé approximant, it allows for an analytical solution of
the OZ equation. We obtained intermolecular monomer–com,
hcm, and com–com, hcc, total correlation functions, which
are simply expressed in real space as the following analytical
functions [26, 27, 50]

hcm(r, Rg) = I ρ(r, Rg), (20)

with

I ρ(r, R) = − ξ ′
ρ

2r
(1 − ξ 2

c /ξ 2
ρ )eR2/(6ξ 2

ρ )

×
[

er/ξρ erfc

(
R√
6ξρ

+
√

3r√
2R

)

− e−r/ξρ erfc

(
R√
6ξρ

−
√

3r√
2R

)]
, (21)

and
hcc(r, Rg) = J ρ(r, Rg) (22)

with

J ρ(r, R) = 3

2

√
3

π

ξ ′
ρ

R

(
ξc

R

)2
(

1 − ξ 2
c

ξ 2
ρ

)
e−3r2/(4R2)

− ξ ′
ρ

2r
(1 − ξ 2

c /ξ 2
ρ )eR2/(3ξ 2

ρ )

[
er/ξρ erfc

(
R√
3ξρ

+
√

3r

2R

)

− e−r/ξρ erfc

(
R√
3ξρ

−
√

3r

2R

) ]
. (23)

Those reduce, in the limit of long polymer chains, to the
following equations

hcm(r̃ , ξ̃ρ) ≈ −3

2

√
6

π
ξ̃ρ

(
1 + √

2ξ̃ρ

)

×
[
1 + O

(
ξ̃ 2
ρ , r̃ 2

)]
e−3r̃2/2, (24)

and

hcc(r̃ , ξ̃ρ) ≈ −39

16

√
3

π
ξ̃ρ

(
1 + √

2ξ̃ρ

)

×
[

1 − 9r̃ 2

26
+ O

(
ξ̃ 2
ρ , r̃ 4

)]
e−3r̃2/4. (25)

Here r̃ = r/Rg is the normalized intermolecular distance
and ξ̃ρ = ξρ/Rg is the normalized length scale of density
fluctuations, with ξρ defined as ξ−1

ρ = ξ−1
c + ξ ′−1

ρ , where ξ ′
ρ =

3/(πρσ 2). Moreover, ξc = Rg/
√

2 is the length scale of the
correlation hole. The normalized total correlation functions,
hcc(r̃ , ξ̃ρ)/ξ̃ρ and hcm(r̃ , ξ̃ρ)/ξ̃ρ , become universal functions
of the reduced distance r̃ when higher-order corrections in ξ̃ρ

are negligible, i.e. for large N .
Equations (20)–(25) formally relate the structure of

the liquid on a mesoscopic level to microscopic molecular
parameters, such as statistical segment length, σ , and radius
of gyration, Rg, as well as to the thermodynamic parameters
of temperature, as σ(T ), and density, ρ. In principle,
equation (22) is apt to describe the mesoscopic structure of
polymer solutions from the melt to the dilute regime, given that
it satisfies the condition that hcc(r) � −1 in the whole range

of melt-like densities down to ρ∗
ch = ρch R3

g � 0.03, where
ρch = ρ/N . Restrictions on the range of ρ∗

ch, on the other
hand, do not exist for equation (20).

To test the quality of our theoretical predictions we
directly compared equations (22) and (25) against the total
correlation functions calculated from united atom molecular
dynamics simulations of melts of polyethylene chains. Test
systems were melts of polymers with increasing degree of
polymerization, N = 44 (T = 400 K, ρ = 0.0324 sites Å

−3
),

N = 66 (T = 448 K, ρ = 0.0329 sites Å
−3

) and
96 (T = 453 K, ρ = 0.0328 sites Å

−3
). Simulation

trajectories for those systems were kindly provided by Grest
and co-workers [51]. When compared against simulation
data, figure (1) shows that both the exact, equation (22), and
the approximate, equation (25), analytical expressions for the
total correlation functions reproduce well UA-MD simulations.
This is a remarkable result because the theoretical calculations
do not contain any adjustable parameter.

The same quality of agreement was also observed for
polyethylene in reciprocal space [26, 27], as well as for melts
of polymers with different monomer architecture in both real
and reciprocal spaces, including polyisobutylene (PIB) and
polypropylenes in their head-to-head (hhPP), isotactic (iPP),
and syndiotactic (sPP) forms [33, 50, 51]. We also found
that exact, equation (20), and approximate, equation (24),
analytical expressions for the monomer–com total correlation
functions reproduce equally well UA-MD simulations, in both
real and reciprocal space [27]. Furthermore, the analytical
total correlation functions correctly predict thermodynamic
properties of the liquid, such as the isothermal compressibility
from the Fourier transform of the k → 0 limit of the
mesoscopic static structure factor, where Scc(0) = 1 +
ρchhcc(0) = (ξρ/ξc)

2 = Smm(0)/N while Scm(0) = N +
Nρchhcm(0) = N(ξρ/ξc)

2 = Smm(0), as well as the equation
of state via the compressibility route [52].

Finally, we calculated the potential of mean force, which
represents the effective interaction between a pair of coarse-
grained units in the mean field of the surrounding particles, and
it is defined as βwcc(r) = − ln[1+hcc(r)], with β = (kBT )−1.
The resulting potential has a Gaussian-like repulsive shape
with a slightly attractive contribution and a range of order Rg.
The potential at contact is

βwcc(0) = − ln

[
1 − 3

8

√
3

π

(
1 + √

2ξ̃ρ

ξ̃ρ

)

×
{

1 + 4

3

(
1 − 1

2ξ̃ 2
ρ

) (
1 −

√
πe1/(3ξ̃ 2

ρ )

√
3ξ̃ρ

× erfc

[
1√
3ξ̃ρ

])}]
, (26)

which, in the large-N limit, reads

βwcc(0) ≈ − ln

[
1 − 39

16

√
3

π
ξ̃ρ

(
1 + √

2ξ̃ρ

)]
(27)

≈ 39

16

√
3

π
ξ̃ρ, (28)

8
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which presents the correct trend of increasing chain interpene-
tration with increasing density, degree of polymerization, and
local stiffness. Figure 2 shows a comparison of wcc(0) as pre-
dicted by theory and observed in simulations for all polymer
we investigated [26, 27, 50]. The response as r → 0 is eval-
uated from simulation data with an algorithm that minimizes
the influence of outliers, a necessity due to poor statistics in
this regime. Error bars depicted in figure 2 are based on re-
sults from the fitting routine. Approximate and exact forms
of wcc(0) become practically indistinguishable when N � 30
and at melt-like densities, for linear and slightly branched poly-
mer chains. The observed trend of the potential at contact
with degree of polymerization is consistent with the predic-
tions of renormalization group calculations [41] and scaling
theory [42].

2.5. Effective mesoscale potentials for homopolymer liquids

The effective interaction potential between two coarse-grained
units, vcc(r), is obtained from equations (20) and (22) by
enforcing the HNC closure, which is accurate for systems
characterized by long-range, soft-core potentials. Figure (1)
shows, as an example, the effective potential for a liquid
of polyethylene molecules with N = 44 monomers. The
potential, so derived, is given by a Gaussian repulsive
interaction, which includes a shallow attractive tail. We found
that the presence of the attractive contribution in the potential
is relevant for the thermodynamic properties of the liquid,
because it is responsible for the stabilization of the liquid
phase [52]. Furthermore, the potential at contact remains
finite, which is consistent with the fact that a pair of center
of mass sites can overlap without violating excluded volume
constraints. Finally, the potential is system specific, because it
is able to distinguish between chemically different polymers.
In this way, the coarse-grained model retains the chemical
identity of the parent polymer [50].

Using the potential so derived, we implemented classical
molecular dynamics simulations of the coarse-grained system,
which is a liquid of interacting soft colloidal particles.
Simulations were performed within the microcanonical
ensemble (N , V , E fixed) and the results for the total
correlation functions are reported in figure 1. The agreement
between united atom and mesoscale simulations is excellent
and consistent with the theoretical predictions of equations (22)
and (25).

Structure and dynamics1 as predicted by the simulations
of the system coarse-grained at the two different levels are
completely consistent, with the structure sampled as the center
of mass distribution function and when dynamics is properly
rescaled and analyzed for length scales larger than the radius of
gyration. However, while UA-MD simulations require ≈24 h
for a system with 1600 particles performed in parallel on a
64-node cluster, for the equivalent trajectory our mesoscale
simulations requires only ≈4 h for a system consisting of
≈6000 particles on a single-CPU workstation, which compares
extraordinarily well. In conclusion, large-scale properties

1 The systems presented here are not entangled.

of homopolymer melts appear to be well represented by
liquids of soft interacting colloidal particles, while simulations
of the coarse-grained systems afford a clear advantage in
computational time.

2.6. Analytical coarse-graining of homopolymer mixtures

When two or more types of polymers are mixed together,
new materials emerge with specific physical and chemical
properties. It is often possible to custom-tailor materials by
simply blending polymer components that possess desirable
features. For instance, upon mixing brittle polystyrene
with non-crystalline polyethylene oxide, a new substance
is produced that is tough yet possesses a highly elastic
modulus. Although polymer blends have been very much a
part of everyday life for a long time, they continue to be a
source of great scientific interest for their many scientific and
technological properties [24, 25, 32, 33, 36, 53–60].

Computer simulations have yielded a great deal of infor-
mation on the correlation between local (intramolecular and
intermolecular) structure and global fluid properties. One of
the challenges in simulating polymer blends is the large range
of length and timescales that need to be investigated, spanning
from the local chemical structure to the length scale of con-
centration fluctuations, which diverges as they approach their
spinodal decomposition.

Coarse-graining of polymer blends in conjunction with
multiscale modeling, is a possible solution to this issue. In our
coarse-graining procedure, polymer blends are mapped into
binary mixtures of interacting soft, colloidal particles centered
at the polymer center of mass. The binary blend consists of
a mixture of A and B homopolymers, having NA and NB

monomer sites with segment lengths σA and σB , respectively,
and γ = σB/σA. For simplicity, these monomer sites are
taken to span equivalent volumes, so that the polymer volume
fraction is given by φ = n A NA/(n A NA + nB NB ), where nα

is the number of molecules of type α in the mixture with
α ∈ {A, B}. While ρm = (n A NA + nB NB )/V quantifies
the total number of monomer sites contained in a region of
space spanned by V , the site and chain number densities for
molecules of type α are given by ρm,α = n A NA/V = φρm and
ρc,α = n A/V , respectively.

Total correlation functions are calculated from the
Ornstein–Zernike equation, which includes monomers and
center of mass sites, and has a matrix form with diagonal
blocks containing self-contributions, whereas cross contribu-
tions occupy off-diagonal positions. Direct interactions involv-
ing auxiliary sites are set to zero, in an extension of the proce-
dure described in the previous section.

Self-intermolecular and cross intermolecular total correla-
tion functions are given as [61]

hcc
AA(r) = 1 − φ

φ
I φ

AA(r) + γ 2 I ρ

AA(r),

hcc
B B(r) = φ

1 − φ
I φ

B B(r) + γ −2 I ρ

B B(r),

hcc
AB (r) = −I φ

AB(r) + I ρ

AB(r),

(29)

9
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where I φ

αβ(r) and I ρ

αβ(r) identify the concentration and density
fluctuation contributions, respectively. We introduce here a
compact notation with the function I λ

αβ(r) defined as

I λ
αβ(r) = 3

4

√
3

π

ξ ′
ρ

Rgαβ

(
1 − ξ 2

cαξ 2
cβ

ξ 2
cαβξ 2

λ

)

× e−3r2/(4R2
gαβ) − 1

2

ξ ′
ρ

r

(
1 − ξ 2

cα

ξ 2
λ

)

×
(

1 − ξ 2
cβ

ξ 2
λ

)
eR2

gαβ/(3ξ 2
λ )

[
er/ξλ erfc

(
Rgαβ

ξλ

√
3

+ r
√

3

2Rgαβ

)

− e−r/ξλ erfc

(
Rgαβ

ξλ

√
3

− r
√

3

2Rgαβ

)]
(30)

and where ξλ ∈ {ξφ, ξρ} and ξ ′
ρ = 3/(πρσ 2

AB), while the
radii of gyration entering the blend equation are defined as
R2

gαβ = (R2
gα + R2

gβ)/2 = 2ξ 2
cαβ . The length scale governing

concentration fluctuations is

ξφ = σAB√
24φ(1 − φ)(χs − χ)

, (31)

which diverges at the spinodal temperature, since χ ≈ χs. The
parameter χ is the analog of the Flory–Huggins interaction
parameter given by χ = εAB − (εAA + εB B)/2 ∝ T −1,
while χs = [2NAφ]−1 + [2NB(1 − φ)]−1 defines the spinodal
temperature.

Also, ξcα = Rgα/21/2 is the length scale of the correlation
hole while ξ−1

ραβ = πρσ 2
αβ/3 + ξ−1

cαβ is the density correlation
length scale with σ 2

αβ = φβσ 2
α + φασ

2
β . This latter definition

reintroduces finite size effects, local semiflexibility, and
branching that pertain to each component through a melt-like
description. The effective segment length scale is determined
from the radius of gyration of each component, through the
relation σα = (6/Nα)1/2 Rg. Equation (29) formally connects
center of mass distribution functions to monomer–monomer
intramolecular and intermolecular distribution functions. In
this manner, one calculates mesoscale properties from
information on the local polymer scale. As previously
mentioned, this feature is important because it correlates
mesoscale properties to microscopic parameters. Because
the formalism of equation (29) is analytical, it affords all
the advantages previously discussed of gain in computational
time, transparent derivation of thermodynamic properties, and
transferability of the representation. Analytical equations
were derived also for the monomer–com total distribution
functions [61].

Next, we compare our analytical expressions against data
from UA-MD simulations of polymer blends [32, 33]. Figure 3
shows that for each blend considered, the theory agrees with
simulation data fairly well. The center of mass total correlation
function provides an estimate of the number of molecules
interpenetrating at some relative distance r . In all the plots we
observe that chains of the stiffest component (B), which have
extended configurations, tend to pack at short distances r <

RgB more efficiently than flexible ones. Flexible molecules,
which have coiled configurations, show a high (low) number
of intramolecular (intermolecular) contacts and pack most

Figure 3. Plots of hαβ(r) against r/RgA for blends. Theoretical
predictions in athermal (full lines) and thermal (dashed lines)
conditions are compared with UA-MD simulations of blends:
A A—(circles), AB—(diamonds), and B B—terms (squares).
Reprinted with permission from [61]. Copyright 2005, American
Institute of Physics.

efficiently at distances on the order of the overall polymer size,
r ≈ 1.5RgA. The extent of intermolecular chain packing upon
blending also depends on the polymer flexibility. The theory
predicts that the stiff (flexible) component packs better (worse),
and the number of self-contacts increases (decreases) when
mixed with a more flexible (stiffer) polymer, in agreement with
simulations.

In general, the agreement between theory and simulations
is good with the exception of the PIB/hhPP and PIB/iPP
blends, for which agreement is only qualitative. For these
systems, the theory overestimates the number of intermolecular
contacts. However, it is well known that PIB blends
are usually immiscible blends at these temperatures and
for these chain lengths [33, 62]. PIB presents a very
efficient intramolecular and intermolecular packing, which
leads to a thermal expansion coefficient and an isothermal
compressibility smaller than in other polyolefin blends [62].
This behavior is due to strong attractive interactions between
the methyl (–CH3) groups, which in PIB molecules are in
very large number (about 50% of the total number of united
atoms) [60]. However, even for PIB blends, the theory shows
very good agreement with simulation data for r ≈ Rg.

Finally, figure 4 shows that the theory is able to predict
correct qualitative behavior also for blends that follow a LCST
phase diagram. At high temperature the blend de-mixes and
displays a distribution function for the AB component that is
consistently lower than the AA and the B B contributions. At
low temperature, instead, the mixing of the A and B species is
enhanced with the AB function always higher than its AA and
B B counterparts.

2.7. Mapping homopolymer blends into mixtures of soft
interacting colloidal particles

We now show how our mesoscale description of polymer
blends effectively maps the system onto a two-component
mixture of colloidal particles by making a formal connection
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Figure 4. Plots of hαβ(r) against r/RgA for a model blend described

by χ = 0.011 25 − 4.75/T (NA = 96, ρm = 0.034 Å
−3

,
σA = 2.44 Å, φ = 0.50, and χs = 0.021). Shown are
A A—(dot–dashed lines), AB—(full lines), and B B—terms (dashed
lines) at two temperatures: T = 150 K (normal-weight lines) and
T = 10 000 K (heavy-weight lines). Reprinted with permission
from [61]. Copyright 2005, American Institute of Physics.

with well-known theories of liquid alloys [63, 64]. The mixture
contains colloidal particles A and B with volume fraction φ =
n A/(n A + nB), total density ρch = ρ/N , and particle size RgA

and RgB . When species A is chosen to be our reference system,
the size mismatch parameter is γ = RgB/RgA, and the reduced
chain density is ρ∗

ch = ρch R3
gA. This renormalized description

can be formally obtained from equations (29) by setting the
effective number of statistical segments in the two components
to be equal, NA = NB = N , while the chain asymmetry is
completely accounted for by the different statistical segment
lengths σ ′

A = RgA
√

6/N and σ ′
B = RgB

√
6/N . Each

effective segment includes the effect of branching and chain
semiflexibility, and must be equal or larger than its polymer
persistence length, a condition fulfilled by long semiflexible
chains.

To make a connection with the theory of colloidal
particle mixtures (liquid alloys), as developed by Bhatia and
Thornton, [63] we calculated the linear combinations of the
static structure factors for the mixture, which are defined as

SAA(k) = φ + φ2ρchh AA(k),

SB B(k) = 1 − φ + (1 − φ)2ρchhB B(k),

SAB(k) = φ(1 − φ)ρchh AB (k),

(32)

and describe fluctuations in number density and concentration.
The density fluctuation contribution (SN N in the conventional
notation for ‘metal alloys’) is given by

Sρρ(k) = SAA(k) + SB B(k) + 2SAB(k), (33)

while the concentration fluctuation contribution (SCC ) is

Sφφ(k) = (1 − φ)2SAA(k) + φ2SB B(k)

− 2φ(1 − φ)SAB (k), (34)

Figure 5. Plot of colloid static structure factors against k RgA for
γ = 1.5 (full lines) and φ = 0.5. Also shown is the athermal
symmetrical case (dashed lines). Left panel: upper portion, Sφφ(k)
with χ/χs ∈ {0.0, 0.2, 0.4, 0.6, 0.8} from bottom to top; lower
portion, Sρφ(k) with χ/χs = 0.0 (top line) and χ/χs = 0.8 (bottom
line). Right panel: Sρρ(k) and Sρρ(k) − δ2 Sφφ(k) (dot–dashed lines,
γ = 1.5; for γ = 1.0, δ = 0) for the same values of χ/χs used in the
left panel (curves are indistinguishable in the plot). Reprinted with
permission from [61]. Copyright 2005, American Institute of
Physics.

and their coupling (SCN ) is

Sρφ(k) = (1 − φ)SAA(k) − φSB B(k)

+ (1 − 2φ)SAB(k). (35)

Figure 5 presents model calculations of equations (33)–
(35), and illustrates how these equations follow closely the
behavior in reciprocal space observed for simple colloidal
mixtures. For example, Sρρ(k) has a k-dependence similar
to the static structure factor for a single-component liquid.
However, because our colloids are soft and can interpenetrate,
there is no formation of solvation shells in the mixture, and
Sρρ(k) becomes a monotonically increasing function of k.
Sφφ(k) and Sρφ(k) oscillate about the values φ(1−φ) and zero,
respectively, as observed in colloidal mixtures with oscillations
becoming less pronounced in Sφφ(k). A more intuitive picture
of the density–concentration fluctuation coupling term can be
achieved by rewriting it as [63]

Sφρ(k) = φ(1 − φ)ρch

∫
[PA(r) − PB(r)]

× sin(kr)

kr
4πr 2 dr (36)

with Pα(r) = (1 − φ)gBα(r) + φgAα(r) the probability of
encountering clustering of particles of species A or B around
the colloid α ∈ {A, B}. In this way, the function Sφρ(k)

represents a measure of the difference in local clustering
between species A and B . Maxima and minima in the function
point at length scales characterized by large asymmetry in the
liquid structure due to the mismatch in particle size. If the two
species are identical, the mixture is uniform and Sφρ(k) = 0
for any k.
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In the k → 0 limit, the density fluctuation contribution
and its coupling with concentration fluctuations reduce to the
simplified forms

Sρρ(0) = ξ 2
ρ

ξ 2
cA

φγ 2 + 1 − φ

γ 2
, (37)

Sρφ(0) = φ(1 − φ)
γ 2 − 1

γ 2

ξ 2
ρ

ξ 2
cA

, (38)

while the concentration fluctuation contribution is

Sφφ(0) = φ(1 − φ)

1 − χ/χs
+ φ2(1 − φ)2(γ 2 − 1)2

(φγ 2 + 1 − φ)γ 2

ξ 2
ρ

ξ 2
cA

. (39)

For a blend of symmetric polymers, where RgA = RgB and
γ = 1, our equations become completely consistent with the
theory for a mixture of symmetric colloidal particles [4, 63].
Equation (37) simplifies to Sρρ(0) = (ξρ/ξcA)2 the melt
compressibility, Sρφ(0) = 0, and the concentration fluctuation
contribution becomes

Sφφ(0) = φ(1 − φ)

1 − 2φ(1 − φ)�E
. (40)

In this derivation, we made use of Flory’s spinodal parameter,
χs, and the renormalized χ parameter for the coarse-grained
polymer mixture �E = Nχ = NεAB − (NεAA + NεB B )/2.
For long polymer chains or high density, equations (37), (38)
vanish because ξρ/ξc → 0, while the concentration fluctuation
contribution Sφφ(0) = φ(1 − φ)/(1 − χ/χs).

In general, asymmetry between the two colloidal species
is quantified by the dilation factor [64]

δ = vA − vB

φvA + (1 − φ)vB
= Sρφ(0)

Sφφ(0)

= (φγ 2 + 1 − φ)(γ 2 − 1)

φ(1 − φ)(γ 2 − 1)2 + γ 2ξ 2
φ/ξ 2

ρ

. (41)

If the partial molar volumes per particle vα = (∂V/∂nα)nβ =α,P,T

of the two species are identical, δ = 0 and γ = 1, there is
no correlation between the fluctuations in particle number and
concentration and Sρφ(k) = 0. At the spinodal, Sφφ diverges
and δ → 0.

The isothermal compressibility for a colloidal mixture is
defined [64] as

ρchkBT κT = Sρρ(0) − Sρφ(0)2

Sφφ(0)

= Sρρ(0) − δ2Sφφ(0). (42)

Here,

ρchkBT κT = ξ 2
ρ

ξ 2
cA

φγ 2 + 1 − φ

γ 2

×
[

1 − (γ 2 − 1)2φ(1 − φ)

φ(1 − φ)(γ 2 − 1)2/γ 2 + ξ 2
φ/ξ 2

ρ

]
, (43)

recovers the melt compressibility when the system is composed
of colloidal particles of identical size, γ = 1. The
compressibility is slightly temperature dependent through
the correction contribution due to Sρφ(0)2/Sφφ(0). The

latter, however, is small for large polymer chains since it
scales with degree of polymerization as N−1 in the athermal
regime, and vanishes approaching the spinodal curve where
the concentration fluctuation correlation length diverges. This
is true at any length scale and the k-dependent blend
‘compressibility’ can be approximated by its first contribution
Sρρ(k) in the entire range of k and for blends of polymer
chains with symmetric or asymmetric size, in agreement with
colloidal particle mixtures.

In conclusion, our coarse-graining theory displays a
good predictive power, while it reproduces known predictions
of established theories for colloidal mixtures, and good
agreement with united atom computer simulations of
homopolymer mixtures.

From the pair distribution functions we derived the
respective effective potential for each pair of like and unlike
molecules, vcc

αβ(r) with αβ ∈ {A, B}, by applying the HNC
approximation as outlined in our approach for polymer melts.
The vcc

α,β (r) so obtained were used as an input to simulations
of coarse-grained polymer mixtures, where each polymer was
represented as an interacting soft colloidal particle. Once more,
the results of mesoscale simulations of polymer mixtures were
found to reproduce center of mass total correlation functions,
as calculated from united atom computer simulations, within
numerical error [65].

2.8. Analytical coarse-graining models for diblock copolymer
liquids

Diblock copolymers are systems of great interest for their
technological applications [66, 67]. Because the two blocks are
chemically different, they experience a repulsive interaction
that would encourage phase separation at low temperatures
where entropy cannot balance enthalpic effects. However,
the chemical bond existent between the two blocks prevents
a complete separation of the two phases. As a consequence,
at low temperatures block copolymer liquids undergo a
microphase transition from disordered systems to ordered
microstructures of nanoscopic size, namely the microphase
separation transition (MST). The length scale characterizing
the size of the microphase is of the order of the block radius of
gyration.

Developing the technology to produce micro-ordered
structures of well-controlled size and shape requires an
understanding of the processes that drive the formation
of micro-ordered phases under different thermodynamic
conditions of temperature T and density ρ, as well as
different chain composition f , monomer structure σ , and
degree of polymerization N . Coarse-graining models of
block copolymer molecules in conjunction with multiscale
approaches, are useful for simulating their properties on the
large range of time and space scales of interest.

We proposed the coarse-graining of diblock copolymer
liquids as liquids of interacting soft colloidal dumb-bells. Each
dumb-bell represents one macromolecule composed by two
effective soft colloidal particles, having the dimensions of the
block radii of gyration, and centered on the coordinates of
the center of mass of each block. Total distribution functions
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for three different length scales are formally related in our
analytical approach, which corresponds to coarse-graining the
molecule at the monomer (the statistical segment length, σ ),
block (the radius of gyration of block A, RgA), and polymer
(the polymer radius of gyration, Rg) scales. In this way,
our theory represents a mesoscopic model of polymeric liquid
structures where total correlation functions are resolved at
three different intramolecular length scales.

In the recent years, there has been a growing interest
in developing coarse-graining models for block copolymers
chains [68–70]. Building blocks of supermolecular structures,
such as cellular membranes, have been modeled as self-
assembling block copolymers chains [71]. A recent paper by
Hansen and co-workers proposes a model of coarse-graining
for a symmetric diblock copolymer similar to ours, as the
chain is modeled as two soft blobs, tethered by an entropic
spring [72]. The blobs have equal size, and the coarse-grained
total distribution functions are calculated numerically from a
Monte Carlo simulation of diblock copolymers described at
the monomer level. Monomers occupy the sites of a simple
cubic lattice, with bond along the x- , y- , or z-directions. The
two blocks individually are modeled as if they where in theta
solvent, while the interaction between them is self-avoiding.
The numerical inversion procedure to derive the coarse-grained
potential is performed in the athermal regime. As the authors
point out in the paper, their model is ‘highly simplified’, which
proves the difficulty in treating intramolecular coarse-graining.
The model, coupled with a reference interaction site model
(RISM) and a random-phase approximation closure, predicts
the mean-field clustering of diblock copolymers in a selective
solvent [73].

Our model differs from the one presented in [72] in
several ways. In our case, the size of the two ‘blobs’
varies depending on the chain composition, f , degree of
polymerization, N , and segment length, σ . Moreover,
repulsive interactions between segments of different chemical
nature are quantified by the interaction parameter, χeff.
Concentration fluctuation stabilization enters through the
polymer reference interaction site model (PRISM) theory for
the monomer-level description [24, 74, 75], and deviations
from mean-field theory [76] are predicted by our coarse-
grained approach as well. The two blocks follow Gaussian
intramolecular statistics, which is a good approximation
for copolymer melts, when each block has a degree of
polymerization Nα > 30, with α ∈ A, B, and for the region
in the phase diagram from the high temperature to the weak
segregation regime (χeff N � 10.5 for symmetric composition
f = 0.5), where the system is isotropic. Numerical mean-field
theory studies suggest coil stretching is not significant even
below the order–disorder transition until a strong segregation
regime is entered, where χeff N � 100 [77, 78].

Segments of different chemical nature are assumed to
have equivalent statistical lengths, σA = σB = σ , while
the specific chemical nature of the block enters through the
block radius of gyration. Segments of like species interact
through the potentials vAA ≈ vB B , while unlike species repel
each other through vAB . At high temperatures, entropic effects
dominate over enthalpic contributions, and block copolymer

liquids resemble closely liquids of homopolymer molecules.
As the temperature decreases, the effective repulsive potential
χeff = vAA + vB B − 2vAB increases as Nχeff ∝ T −1,
leading to the phase separation transition. This phase transition
is characterized by a dramatic increase of the collective
concentration fluctuation static structure factor, Sφ(k∗), at a
specific length scale, k∗ [76]. At the temperature of the
phase transition, only certain fluctuations become anomalously
large and the liquid segregates on a molecular length scale
on the order of the overall size of the molecule, k∗ ∼ R−1

g .
This remarkable property of copolymer liquids is due to
the fact that, because of the connectivity between different
blocks, even complete segregation cannot lead to macroscopic
phase separation, as occurs in mixtures of two chemically
different homopolymer melts [79, 80]. Because even at
high temperatures, Sφ(k) presents a peak due to the finite
molecular size of the block copolymer chain, the peak position
is largely independent of temperature. Moreover, finite size
effects suppress concentration fluctuations leading to a first-
order phase transition. The effective χ parameter includes
contributions from the peak of the static structure factor

2Nχeff = 2Nχs − N/Sφ(k∗), (44)

taking into account the fact that when the spinodal condition is
fulfilled, the inverse concentration contribution of the structure
factor does not vanish: the disordered phase is still present and
eventually the system undergoes a first-order phase transition.

Analytical intermolecular total correlation functions
between like and unlike coarse-grained blocks are predicted
by our formalism as a function of chain composition, block
size, density, temperature, as well as density and concentration
fluctuation screening lengths, in both the real and reciprocal
space. Input to our coarse-graining approach is the monomer-
level total correlation functions from PRISM [81, 82]. We
report here only the expressions for the coarse-grained block–
block intermolecular total pair correlation functions in the
direct representation

hbb
αβ(r) = hbb,ρ

αβ (r) + �hbb,φ

αβ (r), (45)

where α, β ∈ {A, B}. Density, hbb,ρ and concentration,
�hbb,φ , fluctuation contributions separate, with the density
fluctuation contribution given by

hbb,ρ

αβ (r) = f 2 J ρ(r, RαAβ A)

+ f (1 − f )J ρ(r, RαAβB ) + f (1 − f )J ρ(r, RαBβ A)

+ (1 − f )2 J ρ(r, RαBβB), (46)

where α, β ∈ {A, B}, and J ρ(r, R) are defined by
equation (23). The distance (Rαβγ δ)

2 = [(Rgαβ)2+(Rgγ δ)
2]/2,

where Rgαβ is the average distance of a monomer of type β

from the center of mass of the block of type α, as

R2
gαβ = 1

Nβ

Nβ∑
i=1

(�rβi − �Rbα)2. (47)

Density fluctuation contributions for each block are
formally identical to the coarse-graining expressions obtained
for homopolymer melts. This ensures that the block copolymer
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Figure 6. Plot of hbb
αβ(r). Shown are the theoretical representations

(lines) along with data from united atom molecular dynamics
simulations (symbols): A A (circles), AB (squares), and B B
(diamonds) contributions. Panel (a) is for f = 0.50, while panel (b)
is for f = 0.25. Panel (a) also shows the result from the Debye
representation of ωmm

αβ (k) (dashed line). Reprinted figure with
permission from [31]. Copyright 2007 by the American Physical
Society.

formalism correctly recovers the ‘homopolymer-like’ limit
in athermal thermodynamic conditions where concentration
fluctuations are suppressed as the system is far from its phase
transition.

The contribution due to concentration fluctuations is given
by the general equation

�hbb,φ
αβ (r) = �J φ(r, RαAβ A) − �J φ(r, RαAβB )

− �J φ(r, RαBβ A) + �J φ(r, RαBβB), (48)

where we define �J φ(r, R) = J φ

Nχeff
(r, R) − J φ

0 (r, R). In
the small r/Rg regime of interest here, the concentration
fluctuation contribution simplifies, yielding for the auxiliary
function J φ(r, R) the following expression [31]

�J φ(r, R) ≈ f 2(1 − f )2

√
3

π

ξ ′
ρ

R
e−3r2/(4R2)

×
(

2 + 3
ξ 2

c

R2

)
Nχeff. (49)

Figure 7. Plot of �gbb(r) as a function of the distance normalized by
the polymer radius of gyration, for various temperatures. From
bottom to top: Nχeff/Nχhta,s ∈ {0.0, 0.5, 1.0, 2.0}. Shown are the
f = 0.50 (solid lines) and f = 0.25 (dashed lines) cases. The
arrows indicate the respective size of A-blocks. Reprinted figure with
permission from [31]. Copyright 2007 by the American Physical
Society.

The concentration fluctuation contribution increases with
the effective χ parameter. To investigate this effect we define
the parameter �gbb(r), which represents a measure of the
physical clustering with temperature of blocks of like species,
as

�gbb(r) = gbb
AA(r) + gbb

B B(r) − 2gbb
AB(r). (50)

The number of β-type blocks included within a sphere of
radius r ′ from the center of mass of block α, is given by

nbb
α (r ′) = 4πρbβ

∫ r ′

0
r 2gbb

αβ(r) dr + δαβ , (51)

with α, β ∈ {A, B}. Clustering due to concentration fluc-
tuations increases with decreasing temperature, while den-
sity fluctuations provide a contribution constant with temper-
ature, which is a consequence of the asymmetry in diblock
composition and vanishes for compositionally symmetric di-
blocks. The scaling with degree of polymerization of the func-
tion �gbb,φ(r) ∝ √

N/S(k∗) depends on how far the sys-
tem is from its microphase separation transition. At tempera-
tures higher than the order–disorder temperature (T � TODT),
we find that �gbb,φ(r) ∝ N−1/2. At the transition temper-
ature (T ≈ TODT), �gbb,φ(r) ∝ N−5/6, while in the low-
temperature regime (T � TODT), �gbb,φ(r) ∝ N−3/2.

As a test of our coarse-graining expressions, we compare
theoretical predictions with computer simulation data [33]
of homopolymer melts in the athermal (Nχeff = 0)
regime. Because in the high-temperature regime concentration
fluctuations are not present, we can test the ability of our
description to capture the effect of architectural asymmetry.
We consider a diblock copolymer system where chain
arms have equal (symmetric, f = 0.50), or unequal
(asymmetric, f = 0.25) size. In both cases, the theory
is found to be in agreement, within numerical error, with
simulations as figure 6 illustrates. The top panel in the
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figure depicts the analytical solution involving both the Padé
approximant of the intramolecular structure factors, as well as
its Debye approximation, which give comparable agreement
with simulations.

In figure 7, we investigate the behavior at the mesoscopic
scale of our system as the temperature is modified and the
system evolves toward its microphase separation transition. To
make contact with the calculations performed in the athermal
regime, we investigated a diblock copolymer with a constant,
total number of monomers, N = 96, identical segment lengths
for the two blocks, σA = σB , and a repulsive Yukawa
interaction between unlike monomers. The chain is partitioned,
first as a compositionally symmetric diblock, f = 0.5 and
NA = NB = 48, and then as a compositionally asymmetric
diblock with f = 0.25 and NA = 24 and NB = 72. Input to
our coarse-graining theory are the values of Sφ(k∗) calculated
for these two systems at Nχ/Nχhta,s ∈ {0.0, 0.5, 1.0, 2.0}.
These values sample our systems in a range of temperatures
that include the athermal limit, Nχ/Nχhta,s = 0, the spinodal
temperature, Nχ/Nχhta,s = 1, and the weak segregation limit
down to (roughly) the ODT temperature, Nχ/Nχhta,s = 2,
calculated following the procedure in [83, 84].

To study the effects of concentration fluctuations at the
level of blocks, we focus on the physical clustering of like
species as defined in equation (50). In figure 7, �gbb(r) is
shown for the symmetric and asymmetric cases. At athermal
conditions concentration fluctuation contributions are absent.
Repulsive interactions between unlike monomers are screened
and entropic contributions to the free energy are dominant. The
symmetric case exhibits no local clustering effects, and the
system packs in an entirely random fashion. For the model
of diblock copolymer investigated in this study, where the
monomer bond lengths for the two blocks are equal (σA =
σB ), the two diblocks at high temperature are identical for
a compositionally symmetric diblock, i.e. �gbb(r) = 0 for
f = 1/2. For the asymmetric case, on the other hand, there
is an emergence of entropic packing effects arising from the
difference in block sizes, yielding a response in �gbb(r) where
AB contacts are favored (�gbb(0) < 0 at high temperature for
f = 1/2).

As the temperature decreases, the formation of self-
contacts, AA and B B , becomes energetically favorable, while
the system approaches its microphase segregation transition
(�gbb(0) > 0). A shallow minimum develops with decreasing
temperature, at the distance corresponding to the microdomain
size, r ≈ 1.5Rg for the symmetric case, since at the
interface between domains the number of contacts between
unlike species is higher than the number of self-contacts,
i.e. �gbb(r) < 0. For compositionally asymmetric diblock
copolymers, physical clustering occurs around the minority
species, and the minimum is slightly shifted towards the
small r region. In both cases, the minimum is smooth and
shallow, indicating that there is no sharp transition at the
interface between A and B domains, which is a characteristic
of the weak segregation regime: fluctuations still partially
disorder the liquid, while it becomes increasingly correlated
approaching its phase transition.

3. Coarse-graining of dynamical processes

The dynamics of complex fluids develop across many orders
of magnitude in time and length scales. Already at the
molecular level the dynamics are quite complex. From the
local vibrational motion of atoms inside a macromolecule, to
center of mass diffusion, more than ten orders of magnitude
in time (and space) are comprised. Longer timescales are
related to even larger length scales when supermolecular
objects are self-assembled. Interestingly enough, formally
similar dynamic equations describe the motion of systems that
differ by several orders of magnitude in their length scale.
For example, at time longer than the internal decorrelation
time, the translational dynamics of the center of mass of a
molecule follows Brownian motion, which is the same kind
of motion performed by a bacterium swimming in a solvent.
Both systems follow an overdamped Langevin equation
where, however, the parameters in the equation (e.g. the
friction coefficient) are quantitatively different. As a second
example, the motion of mitochondrial reticulum filaments can
be described by a Langevin equation for the dynamics of
overdamped particles connected by harmonic springs, which is
analogous to the equation of motion of a linear macromolecule,
such as polyethylene or a protein [85]. Because the theoretical
formalism used to describe the dynamics of these systems on
very different length scales is formally identical, the challenge
becomes to provide the theoretical tools to determine the values
of the parameters entering those equations, from the lower level
of coarse-graining. If successful, this way of proceeding could
provide us with a complete description of the physics of the
system, from the molecular level up to macroscopic scales,
across many orders of magnitude.

A key quantity entering the dynamics of coarse-grained
systems is the effective potential, which we discussed in
the previous sections of this paper. When the system is
represented at different levels of coarse-graining, different
effective potentials enter the equation of motion, governing its
dynamics. For example, the diffusive center of mass motion
of a macromolecule, which is uncoupled from its internal
conformational transitions, is well represented by the diffusive
equation of a soft colloidal particle. The colloidal particle
is centered at the position of the molecule center of mass,
and interacts with the interpenetrating polymers through the
soft-core potential described in the previous sections of this
paper. Monomer dynamics, on the other hand, are driven by
chain connectivity and the hard-core repulsive potential, which
describes the excluded volume interaction between monomers.

The theoretical description of polymer dynamics at
the molecular level, utilizes coarse-grained models where
effective segments (or monomers) are the fundamental units.
Conventional models for polymer dynamics, such as Rouse
and Rouse–Zimm theories [46], represent the molecule as
a collection of beads, or friction points, connected by an
harmonic intramolecular potential, which mimics connectivity.
The units in these coarse-grained models correspond to
affective particles of the size of one or more monomers,
centered on their center of mass position, ri with i = 1, . . . , N .
Since bond vectors connecting two adjacent beads, li = ri+1 −
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ri are supposed to be uncorrelated, i.e. the polymer chain is
completely flexible, with 〈li · l j 〉 = l2δi j , the effective segment
length has to be larger than or equal to the effective Kuhn
segment, which defines the length scale of intramolecular bond
correlation.

To treat semiflexible polymers, Bixon and Zwanzig
proposed an implemented version of the Rouse model. This is
the so-called Optimized Rouse approach, [86] where the local
semiflexibility is included by modeling the polymer chain as a
freely rotating chain with 〈li · l j〉 = l2g| j−i| with 0 � g � 1.
If g = 1 the theory models the dynamics of a ‘Gaussian
rod’, while if g = 0 the Rouse model is recovered. For
intermediate values of the stiffness parameter, g, the Optimized
Rouse equation describes the dynamics of a chain with local
semiflexibility.

Although textbooks introduce Rouse-like theories as
‘models’, without a derivation from first-principles ap-
proaches, these are Langevin equations, i.e. inhomogeneous
first-order differential equations, which can be formally de-
rived using projection operation techniques. In general, projec-
tion operators are coarse-graining procedures for the dynamics,
as they allow one to derive a Langevin equation (or equiva-
lently a Fokker–Planck equation) for a coarse-grained model,
from the Liouville equation that governs the microscopic level
dynamical description [87]. The necessary step in the appli-
cation of Mori–Zwanzig projection operator technique is the
identification, in phase space, of a set of coordinates that rep-
resent a group of slowly relaxing particles, and to treat the fast
particles in a mean-field way as a heath bath. If two groups
of variables have separate timescale of motion, it is possible
to project the dynamics of the whole system, as described by
the Liouville equation, onto the coordinates of the slow parti-
cles, while fast particle are averaged out by the procedure. The
resulting Langevin equation is a differential equation, linear in
the slow variables, which also contains a memory function con-
tribution describing the history of the system from an ‘initial’
time to the time t at which the dynamic property is investigated.
If a separation of timescales is observed in the complex fluid
and if all the slow relevant variables are included in the pro-
jection operator, the correction due to the memory function be-
comes negligible [6]. In this case, the simple inhomogeneous
first-order differential equation in the slow variables correctly
represents the whole dynamics of the system, while the fast
variables enter the equation through the friction coefficient and
the random forces.

One of the objectives of a coarse-graining procedure
is to provide the value of the different quantities that
appear in the Langevin (or, equivalently, the Fokker–Planck)
equation. More precisely, one would like to relate the friction
coefficient, intramolecular and intermolecular potential, and
the correlation of the random forces (drift and diffusion terms
of the FPE) to the microscopic molecular description. In the
previous sections we described how effective potentials can be
obtained as a function of microscopic quantities using liquid
state theories. Dynamic quantities, such as friction coefficients,
are obtained through the dynamic coarse-graining procedure.

In the conventional model of polymer dynamics, which
corresponds to the Rouse equation for polymer melts and the

Rouse–Zimm equation for polymers in dilute solutions, the
equation of motion is derived by assuming as slow relevant
variables, the ensemble of position coordinates of beads, or
friction points, of a single molecule. By neglecting the
memory function, it is hypothesized that no other relevant slow
variables are present in the liquid besides the space coordinates
of the ‘tagged’ molecule. It is clear from the discussion
above that Rouse-like theories are a good representation of
the dynamics of the system when it is possible to identify one
tagged molecule as being slowly moving. As a consequence,
it is reasonable to expect Rouse-like equations to describe
correctly the dynamics of macromolecules in dilute solutions,
where interpolymer interactions are negligible and the solvent
is rapidly moving with respect to the solute. The application of
Rouse-like approaches for macromolecules in dense solutions
(e.g. glassy states, concentrated solutions, and melts) becomes
more questionable since the ‘solvent’ molecules are not expect
to relax on timescales shorter than the ‘solute’, or tagged
macromolecule.

In the following sections we present two implementations
of the Rouse–Zimm approach, i.e. Langevin equations for
macromolecular dynamics, where these considerations are
taken into account. In the first example, we investigate
the dynamics of polymer melts through an extension of
the Rouse approach, which includes the cooperative motion
of macromolecular chains interpenetrating with the ‘tagged’
molecule. The cooperative many-chain dynamics is a
function of the intermolecular effective potential of mean
force, formally derived through the coarse-graining procedure
discussed in the previous sections of this paper. In the second
example, we focus on the dynamic of a protein in dilute
solutions. This system has no long-lasting intermolecular
potential but complex intramolecular interactions, which
include chain connectivity, hydrogen bonds, Coulombic forces,
and long-range hydrodynamic forces. By means of these two
examples, we discuss two limiting cases where novel Langevin
equations have been developed, which describe a system with
a complex intermolecular potential coupled to a relatively
simple intramolecular interaction, i.e. homopolymer melts, and
a system with complex intramolecular interactions and simple
intermolecular forces, i.e. a protein in dilute solution.

4. Dynamics of a tagged polymer in a liquid of
macromolecules: the Langevin equation for
cooperative dynamics

On a timescale longer than the ballistic regime but shorter than
the longest intramolecular relaxation time, where monomer
dynamics crosses over to center of mass motion, Rouse theory
predicts that the center of mass mean square displacement
follows a linear scaling with time due to Brownian motion,
i.e. �R2(t) ∝ tν , with ν = 1. Experiments and simulations
of polymeric liquids show, however, that the center of mass
mean square displacement follows �R2(t) ∝ tν , with ν < 1,
i.e. a subdiffusive regime, which crosses over to diffusion
on the timescale of the longest intramolecular relaxation
(see, for example, figure 8) [33, 35, 51]. Analysis of
simulation trajectories suggests that the inconsistency between
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Figure 8. Center of mass and monomer mean square displacements
as a function of time for a polyethylene chain. Best fit of the
molecular dynamics simulation data for the center of mass (filled
squares) and monomer (filled circles) mean square displacements
with the many-chain cooperative Langevin equation, equation (52),
for polymer melts (solid lines). Also reported is the Rouse center of
mass diffusion (dashed line).

single-chain theories and simulations is due to the neglect
of intermolecular contributions. This hypothesis is further
supported by the observation that similar anomalous diffusion
is present in systems of small molecules moving inside
polymeric matrices, as well as in polymer solutions above the
overlap concentration, but it is not observed in dilute polymer
solutions where interpolymer interactions are negligible.

The hypothesis that diffusion of a single tagged chain
is uncorrelated with the motion of its surrounding molecules
stands on the assumption that there is a separation of timescales
between the relaxation of solute and solvent [4, 7]. While
this assumption is reasonable for macromolecules in solution
of small molecule solvent, where the different size of solvent
and solute molecules suggests different timescales of dynamic
relaxation, it becomes questionable in polymer melts, because
the tagged polymer chain and its surrounding molecules are
identical.

Simulations of polymer melts show that the dynamics of a
single chain is correlated with the motion of its surrounding
molecules for the timescale corresponding to the time
necessary for the polymer to escape its own spatial dimension.
This decorrelation time is defined as τdecorr ≈ R2

g/Dsc, with
Dsc representing the diffusion coefficient of a single chain.
By this dynamic mechanism, each polymer chain renews
completely its intermolecular contacts, so that if the dynamic
is sampled for timescales larger than τdecorr subsequent steps
in the motion of a polymer molecule are uncorrelated, and the
molecule follows Brownian motion. The decorrelation time
defines the transition from subdiffusive to diffusive motion,
and given that it is equivalent to the longest intramolecular
relaxation time, there is no separation of timescales between
the decay of intramolecular and intermolecular correlations.

In a liquid of macromolecules slow and fast molecules
cannot be immediately identified, since all the molecules in
the fluid have identical chemical structure and degree of poly-
merization. In principle each molecule in the liquid should

diffuse within the same characteristic correlation time. This
state of things leaves little hope for a formally ‘rigorous’ treat-
ment of the dynamics of such large systems, because the dy-
namic of every single molecule in the liquid appears to be
equally important. This implies the need for a full theoretical
treatment for all the molecules, which is an impossible task.
However, a careful analysis of computer simulation trajecto-
ries for the dynamics of unentangled and entangled polymer
melts, shows that while the structure of the liquid is uniform,
its dynamics are heterogeneous with interconverting regions of
slow and fast dynamics. Because a separation of timescales is
observed, it is possible to derive, through projection operator
techniques, a Langevin equation for the cooperative dynamics
of the ensemble of slowly relaxing semiflexible polymer chains
in the field of fast-moving molecules [88–91]. The resulting
Langevin equation describes the dynamics of a segment a, be-
longing to molecule i and positioned at r(i)

a (t), as a balance
of three different contributions: the intramolecular potential
−β−1 ln{�[r(i)(t)]}, the time-dependent intermolecular poten-
tial of mean force −β−1 ln{g[r( j)(t), r(k)(t)]}, and the random
interactions with the surrounding liquid, given by the projected
random force FQ(i)

a (t). The Langevin equation for cooperative
dynamics reads

ζ
dr(i)

a (t)

dt
= β−1 ∂

∂r(i)
a (t)

ln

[ n∏
j=1

�[r( j)(t)]

×
n∏

k< j

g[r( j)(t), r(k)(t)]
]

+ FQ(i)
a (t), (52)

with β = (kBT )−1. When the time-dependent pair dis-
tribution function g[r( j)(t), r(k)(t)] → 1, which corre-
sponds to a vanishing potential of mean force w(r) =
−β−1 ln g[r( j)(t), r(k)(t)] → 0, equation (52) recovers the
equation of motion (eom) for a single macromolecule in a uni-
form bath, i.e. the Rouse equation. Instead, if each polymer
reduces to a single unit, equation (52) recovers the eom for two
interacting colloidal particles, which was derived by Veseley
and Posch [92].

The number of correlated molecules is given by the
statistical number of polymeric chains in the volume spanned
by the tagged chain, which is defined by its radius of gyration,
as

n(Rg) =
(

4πρ

∫ Rg

0
r 2[hcc(r) + 1] dr

)

− 1 ∝ N1/2ρl3
eff, (53)

with hcc(r) the center of mass total correlation function. This
number increases with increasing degree of polymerization, N ,
increasing chain stiffness, leff, and increasing total monomer
number density, ρ. In our calculations n is assumed to be an
adjustable parameter, whose value is determined by optimizing
the agreement of theory against simulation or experimental
data.

4.1. Center of mass anomalous diffusion

Once the Gaussian form of the intramolecular and of the
intermolecular potentials of mean force are included in
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equation (52), the latter can be solved by transformation
into normal modes of motion. Dynamics in normal modes
decouple into two equations of motion, which represent
the relative and the collective contributions, respectively.
As a function of the eigenvalues and eigenvectors of the
matrices of intramolecular and intermolecular correlation, it is
possible to solve all the time correlation functions of interest,
which are a linear combination of relative and collective
dynamics. Quantities of interest include the statistically
averaged, mean square com displacement for the single chain,
�R2(t) = 〈[Rcom(t) − Rcom(0)]2〉, where Rcom(t) is the
position coordinate of the polymer com at time t . Relative
dynamics are driven by the intermolecular potential, and
a single chain experiences a force due to the surrounding
polymers, which is approximated by the following equation

G(t)R(t) ≈ nN
171

32

√
3

π
ξρ/R3

g

× (
1 + √

2ξ̃ρ

)
e−75〈R2(t)〉/(76R2

g) R(t), (54)

with R(t) being a relative, many-chain interpolymer distance.
The mean square average distance between a pair of
macromolecules is estimated as

〈R2(t)〉 ≈ n�R2(t) − 6Dcollectivet, (55)

with
Dcollective = Dsc(N1/2ρleff)

−1, (56)

the cooperative diffusion coefficient representing the dynamics
of the com of an ensemble of n interacting molecules, which
tends to vanish for systems with a large number of dynamically
correlated molecules.

The calculation of the com mean square displacement,
and other time correlation functions, has to account for the
fact that the intermolecular force of equation (54) depends
on the time-dependent intermolecular distance 〈R2(t)〉. At a
fixed time interval, the equation is solved self-consistently until
convergence between calculated and predicted mean square
average interpolymer distance is obtained: the procedure is
then repeated for small increments of time, �t = 10−2 ps.
The single-chain com mean square displacement that results
from this procedure, exhibits subdiffusive behavior that crosses
over to the diffusive regime when 〈R2(t)〉 > R2

g , i.e. when
the molecule diffuses beyond the range of the intermolecular
potential of mean force. In the long-time, large-distance, limit
polymer dynamics recovers single-chain diffusion.

When sampled at short time intervals, the diffusive
dynamics of macromolecules is cooperative due to the effective
intermolecular potential. However, as the system configuration
is sampled at increasing time intervals, it become less and less
correlated with the initial configuration. Two configurations
sampled at a time interval longer than the time necessary
for a molecule to diffuse outside its volume (τdecorr), or at a
distance larger than the range of the potential (�R2(t) > R2

g),
are statistically independent and the com dynamics follow
Brownian motion.

In figure 8 we show, as an example, the comparison
between theoretical predictions and data from UA-MD
simulations for a polyethylene chain of N = 100 monomers.

Input to the theory are the values of ρ = 0.03242 sites Å
−3

,
T = 450 K, and leff = 4.30 Å from simulations. The
single-chain, long-time, diffusion coefficient from UA-MD
simulations provides the value of the monomeric friction as
ζ = kBT/(N Dsc) = 0.4179 dynns cm−1. Figure 8 shows
that the theory reproduces quantitatively the com dynamics,
including the crossover from subdiffusive to diffusive regimes
at τdecorr = 18.72 ns. The number of molecules undergoing
cooperative dynamics, n = 12, obtained by optimizing the
agreement between theory and simulation data, is found to be
consistent with its estimated value, as n ∝ N1/2.

Correlations between scaling exponents, friction, number
of correlated molecules, and local flexibility were investigated
for a series of homopolymer melts where the number of
united atoms in each molecule was kept constant (N = 96)
while the semiflexibility changed [50], as well as for polymers
with identical segment structure and increasing degree of
polymerization, N [88–91]. Single-chain center of mass
dynamics, as calculated from equation (52), agree with united
atom molecular dynamics simulations in the whole range of
timescales available, which includes subdiffusive and diffusive,
long-time regimes. In general, the slope of the subdiffusive
regime, as well as the crossover time are sensitive to the overall
polymer spatial dimension, Rg, which depends on the degree of
polymerization, N , as well as on the local bond semiflexibility,
leff [50, 88–91]. For the polymers investigated so far, the extent
of anomalous (i.e. subdiffusive) dynamics observed in the plots
increases with increasing degree of polymerization and local
chain stiffness, in agreement with the theoretical predictions.

4.2. Monomer dynamics

For times shorter than the decorrelation time, Rouse theory
predicts for the monomer mean square displacement a
crossover from the short-time behavior

�r 2(t) = 〈[rN/2(t) − rN/2(0)]2〉 = 6Dt (N + 1), (57)

to the regime

�r 2(t) =
√

12Nl2 Dt

π
. (58)

At t ≈ τdecorr the monomer mean square displacement reduces
to the center of mass dynamics and follows Fickian diffusion,
�r 2(t) = 6Dt .

Experimental data and computer simulations of monomer
mean square displacements for a melt of unentangled PE
chains show an overall agreement with Rouse dynamics in
the long timescale, t > τdecorr. However, in the intermediate
regime simulations display a scaling in time stronger than
the predicted Rouse behavior, �r 2(t) ∝ tν with ν >

0.5 [35, 93]. The observed disagreement is not surprising,
since the Rouse model describes the dynamics of an infinitely
long and completely flexible polymer. In reality polymer
chains have finite size and local semiflexibility, which produce
slow, local conformational transitions. More precisely, local
flexibility has multiple origins, being related to the complex
energy landscape of the polymer, which affects not only the
static persistence length, i.e. the energy minima, but also the
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possibility of activated barrier crossing, which determines the
dynamic aspect of the persistence length [48, 94].

A better agreement between theory and experiments/simul
ations is obtained once the finite size of the molecule is
taken into account, through a matricial representation of the
Langevin equation [88–91]. Moreover, the Optimized Rouse
approach derived by Bixon and Zwanzig allows one to include
local chain semiflexibility by modeling the polymer as a freely
rotating chain [86]. For the system illustrated in figure 8,
the monomer length is lbond = 1.54 Å and the bond–bond
correlation is given by the flexibility parameter g = 0.74.
Figure 8 shows that our approach, which includes finite size
and local semiflexibility, predicts monomer dynamics in good
agreement with UA-MD simulations, for the whole range of
timescales investigated.

Because the freely jointed model, described by the
Rouse approach, does not include local stiffness, it becomes
equivalent to a more realistic freely rotating chain model,
which includes local stiffness, only for length scales larger
than the local persistence length, here leff = 4.30 Å. This
fact explains the crossover to the t0.5 exponent, observed in
the monomer dynamics of some systems, for length scales
larger than the dynamical persistence length but shorter than
the molecular radius of gyration, leff < �r < Rg.

This analysis suggests that intermolecular forces, which
are extremely important in modifying the center of mass
diffusion, have little effect on the local monomer dynamics,
at least for melts of unentangled chains. In fact, the anomalous
monomer dynamics observed in experiments and simulations
is mostly accounted for by a theoretical model that includes
local semiflexibility, while it is not sensitive to the presence of
the com intermolecular potential.

5. Coarse-grained dynamics of proteins in dilute
solution

The relevant dynamics of a protein in solution span a large
range of time and spatial scales from local dynamics, on
picosecond timescale, to global conformational transitions and
folding, which can happen on timescales of milliseconds and
longer. Long-time, large-scale properties depend on the local
chemical structure, so that global conformational transitions,
intramolecular conformational rearrangements during protein
aggregation, and folding dynamics, are functions of the protein
primary sequence. In order to predict protein dynamics from
its primary sequence, it is necessary to formalize optimized
theoretical descriptions that can bridge different orders of
magnitude in time and length scales.

Developing a theoretical approach to describe the
dynamics of biologically relevant macromolecules has been
an ongoing goal in biophysics. The conventional theory
for the dynamics of macromolecules in dilute solutions is
the Rouse–Zimm approach [46]. This approach has been
proven successful in explaining experiments that focus on
the dynamics of synthetic macromolecular systems, but it
does not provide predictions in quantitative agreement with
experiments when protein dynamics are concerned. A
reasonable explanation for this observation is that synthetic

macromolecules are relatively simpler objects than natural
molecules, whose structure and dynamics were optimized by
evolution to perform biological functions.

In fact, protein fluctuations are driven by the complex
interplay of several forces, which include hydrogen bonding,
Coulombic interactions, chain connectivity, and excluded
volume forces. Another important contribution to dynamics
is give by hydrodynamic interaction forces, which account
for the fact that a residue moving in the fluid perturbs the
solvent velocity around a second residue, modifying in this
way its friction and its dynamics. Hydrodynamic interaction
is a slowly decaying, long-ranged force which affects protein
long-time dynamics.

Historically, theories for the dynamics of complex macro-
molecular systems have focused on developing approximated
solutions of the memory function correction to the traditional
Rouse–Zimm equation [95–97]. We approach the problem
from a different perspective, by selecting appropriate slowly
relaxing variables, which allows us to minimize the memory
function contribution [98]. In our approach Bixon–Zwanzig’s
Optimized Rouse theory is extended to explicitly include in
the hydrodynamic matrix the effect due to residues partially
buried inside the molecule. This contribution is particularly
important when the dynamics of proteins are concerned, since
configurational fluctuations of folded proteins maintain intact
their hydrophobic core. Moreover, to account for the complex
intramolecular potential, we adopt as an input to the theory
structural correlation functions, and equilibrium (temperature
and density) and non-equilibrium parameters (friction and vis-
cosity), obtained from atomistic computer simulations, where
the solvent is fully described. Stability of the secondary struc-
tures, hydrogen bonds, hydrophobic interactions, short-time
correlation of solvent molecules to the protein, and more, are
implicitly taken into account in the form of the structural cor-
relation functions calculated from simulations, which enter our
Langevin Equation for protein dynamics.

From the solution of the equation, time correlation
functions are calculated and tested in the short-time
regime against simulation and against experiments of x-ray
temperature factors and NMR order parameters. The same
theory provides theoretical predictions of long-time dynamics,
which are tested against experimental data obtained by NMR
measurements of longitudinal relaxation time T1, transverse
relaxation T2, and steady-state nuclear Overhauser effect
(NOE). The theory provides predictions of time correlation
functions in agreement with simulations and experiments in
the short-time regime and with NMR relaxation dynamics
in the long-time regime. [98] In this way, one theoretical
framework efficiently bridges information from short-to long-
time dynamics. The agreement, although not completely
quantitative, is remarkable since the test involves independent
experimental measurements and no adjustable parameters.

Several theoretical approaches have been developed to
correlate NMR relaxation data to models of protein mobility.
Of the initial attempts to model NMR relaxation by assuming
specific mechanisms of diffusive dynamics [99–101] the most
widely accepted is the model-free approach by Lipari and
Szabo [102, 103]. In a seminal paper they presented a formally
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simple but physically sound theory that maps the decay of the
time autocorrelation function for the single bond vector into a
linear combination of two uncorrelated dynamic processes. In
its simplest form the theory requires three fitting parameters:
the local and global correlation times, and a generalized order
parameter determined by the weights assigned to the two
dynamic processes. The main contribution of the Lipari–
Szabo approach is that it allows for an analysis of NMR
relaxation data to provide an approximate, although fairly
realistic, picture of the local motions of the protein. Later
theoretical approaches correlate the measured order parameters
to protein entropy [104, 105] and function.

The assumptions in Lipari–Szabo theory are consistent
with the dynamics of flexible bonds in a globular protein.
For this system, local motions follow two uncorrelated decay
processes given by the local bond dynamics and the overall
protein tumbling. However, in general, protein dynamics do
not obey a simple three parameter scheme and experimental
data can be reproduced by the theory only at the expense of
introducing a high number of fitting parameters [106–109].
The complexity of the underlying dynamics, even for a simple
flexible globular protein, has been made apparent in the recent
work by Brüschweiler and co-workers. In the reorientational
eigenmode dynamics theory [110, 111] the local reorientation
of backbone bonds is obtained from simulations by initially
eliminating the overall tumbling motion from MD trajectories.
The global dynamic modes are calculated a posteriori through
a numerical fitting of correlation times. This procedure is
repeated until good numerical agreement with the data is
achieved. It is clear from this model that, even for globular
proteins, the dynamics is a combination of many slow dynamic
processes.

Our theory is different from the described approaches
because we focus on deriving an equation of motion for
protein dynamics that correctly describes a broad range of time
regimes, and provides a good prediction of different NMR
experiments, (i.e. T1, T2 and NOE), x-ray crystallography
temperature factors, and computer simulations [98]. We
are interested in pursuing this alternative avenue for the
following reason: while parameter-dependent models can
achieve good agreement with experiments by including an
increasing number of adjustable parameters, this is often
accomplished at the expense of physical self-consistency and
broad predictive power.

The test protein of our approach is the signal transduction
protein, CheY. This protein is a member of the superfamily
of response regulator proteins, and controls the chemotactic
swimming response of motile bacteria. This mechanism
of response to stimuli is controlled by a two-component
regulatory system, which includes a sensor component, an
autophosphorylating protein kinase, and the response regulator
CheY. Since two-component regulatory systems are ubiquitous
in prokaryotes as well as in low eukaryotes, understanding
the role of flexibility and dynamics of the response regulator,
CheY, with respect to the general mechanisms of signal
transduction is of fundamental scientific interest.

5.1. A Langevin equation for protein dynamics

In our Langevin approach [98], the protein is described as a
series of N effective units, or friction points, centered at the
α-carbon position of each residue and identified by the vector
ri (t), with i = 1, 2, . . . , N . Each unit has friction ζi =
ζi,w + ζi,p given by the contribution to the friction due to the
area in the residue exposed to the solvent, ζi,w = 6πηwri,w and
the contribution given by the area screened from the solvent,
for example the area exposed to the hydrophobic region of the
protein, ζi,p = 6πηpri,p . Here ri,w (ri,p) is the hydrodynamic
radius of a spherical bead of surface area equal to the surface
exposed (shielded from) the solvent. The internal viscosity of
the hydrophobic core of the protein, ηp, is assumed to be twice
the magnitude of the viscosity of the water solvent, ηw. This
value is chosen on the physical grounds that residues in the
hydrophobic core move in a liquid of hydrophobic particles,
similar to the environment of a monomer in a melt of polymer
chains.

The time evolution of the space coordinate for unit i obeys
the Langevin equation

ζ
∂ri(t)

∂ t
= −3kBT

l2

N−1∑
j,k=0

Hi, j A j,krk(t) + Fi(t), (59)

since the motion of each residue is driven by the balance of
forces acting on the residue, which includes the random force,
Fi(t), the viscous force, ζ(∂ri (t)/∂ t), and the intramolecular
force, defined as

− 3kBT

l2

N−1∑
j,k=0

Hi, j A j,krk(t). (60)

Here, ζ = N−1
∑N−1

i−0 ζi is the average friction coefficient.
The matrix that describes the chain connectivity, A, is

coupled to the solvent-mediated hydrodynamic interaction
matrix, whose generic element, Hi j , describes how the motion
of residue i produces instantaneous waves in the solvent, which
perturb the velocity of the fluid surrounding a second generic
residue j . The random force, due to the collisions of solvent
molecules on the residue, obeys the fluctuation-dissipation
condition

〈Fx,i (t) · Fy, j (t
′)〉 = 2kBT ζ δxyδi jδ(t − t ′). (61)

Here A is the matrix of intramolecular connectivity which
reduces to the Rouse matrix for infinitely long and flexible
macromolecules. The connectivity matrix is defined by the
product of matrices Ai, j = ∑N

k,p=2 Mk,i U
−1
k,p Mp, j , where U

is the equilibrium averaged bond correlation matrix

Uk,p = 〈lk · lp〉
lkl p

, (62)

and M is the connectivity matrix, with all the elements equal
to zero except M0,i = 1/N with i = 0, . . . , N − 1, Mi,i = 1
and Mi,i−1 = −1 with i = 1, . . . , N − 1. The U matrix
for our protein is defined by the statistical averages calculated
from simulation trajectories. In this way the intramolecular
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potential, Vi, j = 3kBT l−2ri Ai, j r j implicitly contains all
the relevant contributions of intramolecular origin due to the
complex force field that drives protein motion.

A new feature of our approach is the definition of the
hydrodynamic interaction matrix,

Hi, j = ζ

ζi
δi, j + (1 − δi, j)

ζw

6πηw

〈
1

Ri, j

〉
, (63)

which in the new form of equation (63) properly accounts
for residues partially screened from the solvent. Here, ζw =
N−1

∑N−1
i−0 ζi,w is the average friction coefficient for the area

exposed to the solvent. In the conventional definition of
the hydrodynamic interaction, i.e. the Rouse–Zimm approach,
residues are supposed to be statistically fully exposed to
solvent. This is a good approximation for synthetic polymers
in good and theta solvents; however, for folded proteins the use
of the conventional approach leads to unphysical results. The
statistically averaged inverse distances, entering the matrix H,
are calculated from the trajectory of the MD simulation of the
protein in solution.

Equation (59) represents a set of N coupled equations
of motion, which decouple by Fourier transform into normal
mode coordinates. Eigenvalues and eigenvectors of the matrix
product HA allow for the solution of any time correlation
function of interest, including functions that decay on a
timescale longer than the range of the simulation. The quality
of agreement we obtain between our approach and available
experimental data supports the validity of our description [98].

5.2. Test of the theory against experimental data of NMR
relaxation

The time correlation function of interest for the study of protein
dynamics is the autocorrelation function Pi

2 (t), which is the
second-order Legendre polynomial of the cosine of the angle
spanned by the reorientation of the bond vector i during time
t . The Fourier transform of Pi

2 (t) is the spectral density,
which determines the relaxation times measured in NMR
experiments, such as the nuclear Overhauser effect (NOE), the
spin–lattice relaxation time (T1), and the spin–spin relaxation
time (T2) [114–116].

Perico and Guenza [112, 113] have shown that for a
macromolecule, the autocorrelation function Pi

2 (t) is simply
expressed as a function of the time correlation function Mi

1(t)
as

Pi
2 (t) = 1 − 3

[
x2 − π

2
x3

(
1 − 2

π
arctan x

)]
, (64)

with

x =
[
1 − (

Mi
1(t)

)2
]1/2

/
Mi

1(t). (65)

The time correlation function Mi
1(t) is defined as a function of

eigenvalues, λa , and eigenvectors, Qi,a , of the matrix product
HA and the eigenvalues, μa of the matrix A, according to

Mi
1(t) = 〈li (t) · li(0)〉

〈li (t)〉〈li (0)〉

=
N−1∑
a=0

(
Qi+1,a − Qi,a

)2
μ−1

a exp{−σλat}, (66)

and σ = 3kBT/(l2ζ ).

Figure 9. Comparison between theoretical predictions (circles) and
experiments (squares) of spin–lattice relaxation time (T1), spin–spin
relaxation time (T2), and NOE of Escherichia coli signal regulator
protein CheY. Splines interpolate theory (black lines) and
experiments (white lines). Reprinted with permission from [98].
Copyright 2007. Biophysical Society.

In figure 9 we show a comparison between theoretical
predictions and experiments for T1, T2, and NOE of
Escherichia coli CheY. For all of the residues, we find that
the theory reproduces well the experimentally observed trend
of fast and slow relaxation. Notice that the slow relaxation
processes mentioned here do not include slow exchange
processes, which cannot be predicted by our theory in its
present stage of development. The baseline in the data
represents the overall protein rotation, which relates to the
protein long-time dynamics and depends on the model for
hydrodynamic interaction. Peaks in the spin–lattice relaxation
indicate local flexibility and fast relaxation. Both theory
and experiments show an enhanced flexibility in regions of
the protein corresponding to the α2 − β3 loop (47–52), the
β4 −α4 loop (87–92), and the turn including bonds 76–80. For
purposes of visual clarity, we have omitted from figure 9 the
trivial relaxation of the bonds at the two ends of the protein. For
those segments, both theory and experiments show enhanced
flexibility and fast dynamics due to the lack of connectivity, so
that NMR relaxation times largely exceed the range depicted
in the figure.

The relatively good agreement between theory and three
independent experimental data sets is encouraging, especially
in light of the fact that more than 350 data points are described
without the need for adjustable parameters. In conclusion,
the quality of agreement obtained in this study shows that
simulations, theory, and experiments are largely compatible in
providing consistent information on the physics of the system.

5.3. NMR order parameters

Through the direct modeling of NMR relaxation data using
the Lipari–Szabo theory, a commonly extracted quantity is
the order parameter S2

i = Pi
2 (�t) with 0 < �t < τR and

τR the protein orientational correlation time, i.e. the time of
global molecular rotation. For times short in comparison to the
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Figure 10. Comparison between theoretical predictions (full line)
and experiments (dashed line) of NMR order parameter (top panel)
and x-ray temperature factors (bottom panel) of Escherichia coli
signal regulator protein CheY. Reprinted with permission from [98].
Copyright 2007, Biophysical Society.

relaxation of the orientational time correlation function, Pi
2 (t),

the bond reorientation can appear restricted to fluctuations
around a specific angle. This angle could be similar to that
in the proteins native conformation, suggesting that the bond
is part of a rigid local structure and S2

i = 1. Alternatively, the
angle could strongly differ from that of the native structure if
the bond is flexible, i.e., S2

i � 0.7. In figure 10 (top panel), we
directly compare our theoretically predicted order parameters
with the corresponding values extracted from experimental
NMR data using the Lipari–Szabo theory. Several bonds in
CheY cannot be modeled and experimental values are available
only for 90 of the 129 residues. We chose the sampling time
interval for the theoretical data by optimizing the agreement
between the orientational correlation function for the first bond
along the protein sequence and its corresponding experimental
value.

In general, order parameters extracted from NMR data
have sharp peaks and fast transitions from completely
immobile to strongly mobile residues, along the primary
sequence, while the theory exhibits a smoother behavior. This
could be due to the fact that data from experiments are obtained
by representing the overall decay of the function as a two-steps
relaxation, which is often an unrealistic approximation. On the
other hand, the theory contains contributions from N modes of
relaxation.

Overall, the agreement between our theory and the
experimental data is good for the entire primary sequence.
Both theory and experiments show several regions with
significant loss of orientation, including the two ends of the
protein, the α2 − β3 loop (residues 47–52), the β4 − α4 loop
(residues 87–92), and the turn (residues 76–80), consistent
with the relaxation data discussed earlier.

5.4. X-ray temperature factors

As a second test of the theory in the short-time regime,
we compare its predictions of temperature factors against

the corresponding experimental values obtained from high
resolution x-ray crystallography of Escherichia Coli CheY
by Volz and Matsumura [117]. The theoretical value of the
temperature factors for bond i , Bi , is a function of the residue
mean square fluctuation about its equilibrium position, and is a
simple function of eigenvalues, λa , and eigenvectors, Qi,a , of
the matrix product HA and the eigenvalues, μa of the matrix
A, as

Bi = 8π2

3
〈[Ri (t) − Ri (0)]2〉

= 16π2l2

3

N−1∑
a=0

(Qi+1,a)
2

μa
[1 − exp(−σλat)], (67)

where σ = 3kBT/(l2ζ ). If the equation of motion correctly
represents the dynamics of the protein under consideration, the
same equation should also provide a good representation of
short-time fluctuations as measured by temperature factors.

Because the time interval of the fluctuations measured
by x-ray experiments is not known, we assume in our
calculations a time interval of �t = 3.5 ps, which provides
the best agreement for the baseline between our predictions
and the experimental data. The adopted value of 3.5 ps
is consistent with an estimated value. Furthermore, we
observe that differences in �t on the order of 0.5 ps do
not significantly change the quality of the agreement between
theory and experiment. Figure 10 (bottom panel) shows
that both experiment and theory present similar regions of
enhanced short-time fluctuations along the protein primary
structure. Most of these regions correspond to flexible loops.
The agreement between theory and experiment is good, and
comparable to the agreement obtained using other theoretical
models such as the Gaussian network models pioneered by
Bahar, Erman, Jernigan, Tirion, and co-workers [118–120].
A notable factor that affects the precision of the experimental
data is the presence of intermolecular constraints due to crystal
packing. Intermolecular constraints, which are absent in
physiological conditions and are not included in our approach,
suppress the amplitude of local fluctuations, and could be
responsible for the lack of mobility observed, for example, in
the region defined by residues 100–105. In summary, figures 9
and 10 illustrate the utility of a general approach for protein
dynamics, which describes in a unified theoretical framework
data obtained from independent measurements and different
experimental techniques.

6. Summary and conclusions

Because the dynamics of macromolecules develop across many
orders of magnitude in time and length scale, experiments and
simulations can provide information only on a restricted range
of those properties. Therefore, theoretical approaches that
describe structure and dynamics of polymer liquids become an
indispensable tool because they allow to connect in an unified
physical picture the different pieces of information obtained
experimentally and from simulations. The development of
such theoretical models is, however, quite challenging, given
the complexity of the systems investigated. Recently, one
main focus in polymer physics has been the development of
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novel theoretical techniques, which involve coarse-graining
procedures. For example, structural coarse-graining allow one
to investigate a system at different levels of detail, through
mesoscale simulations, and then combine, in a multiscale
procedure, the information obtained into a complete physical
picture.

In this work we reviewed recent developments in the
theory of structural and dynamic coarse-graining of complex
macromolecular liquids. The approaches presented are first-
principles ones, as opposed to phenomenological, since they
use conventional tools of equilibrium and non-equilibrium
statistical mechanics. Although this review focuses mostly
on recent research developments by our group, the theory
is introduced in the context of the larger framework of the
existing literature. When possible, the theory is compared
against simulations and against experimental data to provide
support to the new hypotheses introduced.

More specifically, this review discusses new analytical
methods to coarse-grain the structure of macromolecular liq-
uids of increasing molecular complexity, such as homopolymer
and block copolymer liquids and their mixtures. Effective pair
potentials acting between coarse-grained units are calculated
using liquid state theory. Those potentials are found to provide
a reliable representation of the thermodynamic of the system.
Moreover, potentials of mean force, so derived, are input to
equations of motion of macromolecular dynamics.

Langevin equations are derived by applying projection
operator techniques to the Liouville equation, using the well-
established coarse-graining procedure for liquid dynamics. As
an example, we introduced an equation of motion for the
cooperative dynamics of a group of interacting polymers in a
liquid, where interpolymer interactions are responsible for the
anomalous center of mass diffusion observed in simulations
and scattering experiments. Next, we presented a Langevin
equation for the dynamics of proteins in dilute solution,
which includes a novel form of the hydrodynamic interaction
matrix, and we calculated time correlation functions that are
measured in NMR and x-ray experiments. The validity of
the discussed theoretical approaches is supported by the good
agreement observed as theoretical predictions are compared
against available simulation and experimental data.
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[101] Bremi T, Brüschweiler R and Ernst R R 1997 J. Am. Chem.

Soc. 119 4272
[102] Lipari G and Szabo A 1982 J. Am. Chem. Soc. 104 4546
[103] Lipari G and Szabo A 1982 J. Am. Chem. Soc. 104 4559
[104] Massi F and Palmer A G III 2003 J. Am. Chem. Soc.

125 11158
[105] Yang D W, Mok Y K, Forman-Kay J D, Farrow N A and

Kay L E 1997 J. Mol. Biol. 272 790
[106] Clore G M, Szabo A, Bax A, Kay L E, Driscoll P C and

Gronenborn A M 1990 J. Am. Chem. Soc. 112 4989
[107] Vugmeyster L, Raleigh D P, Palmer A G III and

Vugmeister B E 2003 J. Am. Chem. Soc. 125 8400
[108] Chang S-L, Szabo A and Tjandra N 2003 J. Am. Chem. Soc.

125 11379
[109] Baber J L, Szabo A and Tjandra N 2001 J. Am. Chem. Soc.

123 3953
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